14 research outputs found
Estrogen Induces c-myc Transcription by Binding to Upstream ERE Element in Promoter
Estrogen Receptor α(ERα) is reported to regulate the expression of many target genes by binding to specific estrogen response elements (EREs) in their promoters. c-myc is known to be over-expressed in most of the human carcinomas due to dysregulated transcription, translation, or protein stability. Estrogen (E) can induce the c-myc expression by binding to an upstream enhancer element in its promoter. This suggests that elevated estradiol (E2), a potent form of estrogen, levels could induce the expression of c-myc in breast cancer (BC). The expression of c-myc and estradiol were induced at Stage III and Stage IV of breast cancer. c-myc and estradiol expression was also associated with the established risk factors of breast cancer, such as BMI. Age at the time of the disease was alsocorrelated with the relative expression of c-myc and estradiol (p < 0.0007 and p < 0.000001). The correlation coefficient (R = 0.462) shows a positive relationship between estradiol bound ER, ER, and c-myc. Docking energy −229 kJ/mol suggests the binding affinity of estradiol bound ER binding to 500 bp upstream of proximal promotor of c-myc at three distinct positions. The data presented in this study proposed that the expression of c-myc and estradiol are directly correlated in breast cancer. The prognostic utility of an induced level of c-myc associated with the normal status of the c-myc gene and estradiol for patients with metastatic carcinoma should be explored further
Nutraceutical Effect of Resveratrol on the Mammary Gland: Focusing on the NF-κb /Nrf2 Signaling Pathways
The aim of this study is to evaluate the defensive role of resveratrol, which is antagonistic to the oxidative stress and inflammation that is prompted by LPS in mammary tissue of female mice. Thirty adult mice were distributed into three groups (n = 10) control (CON), lipopolysaccharides at 2.5 mg/kg (LPS), and lipopolysaccharides at 2.5 mg/kg with 2 mg/kg of resveratrol (RES + LPS). The treatments were applied for 15 consecutive days. Spectrophotometry was used to quantify ROS in the blood, and proinflammatory cytokines concentrations were determined through radioimmunoassay. NF-κB, Jnk, IL-1β, Erk, IL-6, Nrf2 and TNF-α were quantified by RT-qPCR, and Western blots were used to quantifyP65 and pP65 protein intensities. MDA production was considerably increased, and the activity of T-AOC declined in the LPS treatment in comparison with the CON group but was significantly reversed in the RES + LPS group. Proinflammatory cytokines production and the genes responsible for inflammation and oxidative stress also showed higher mRNA and pP65 protein intensity in the LPS group, while Nrf2 showed a remarkable decline in mRNA expression in the LPS versus the CON group. All these mRNA intensities were reversed in the RES + LPS group. There were no remarkable changes in P65 protein intensity observed between the CON, LPS, and RES + LPS groups. In conclusion, resveratrol acts as a protective agent to modulate cellular inflammation and oxidative stress caused by LPS in mammary tissue of female mice
Transcriptomic Analysis of Conserved Telomere Maintenance Component 1 (CTC1) and Its Association with Leukemia
Telomere length (TEL) regulation is important for genome stability and is governed by the coordinated role of shelterin proteins, telomerase (TERT), and CST (CTC1/OBFC1/TEN1) complex. Previous studies have shown the association of telomerase expression with the risk of acute lymphoblastic leukemia (ALL). However, no data are available for CST association with the ALL. The current pilot study was designed to evaluate the CST expression levels in ALL. In total, 350 subjects were recruited, including 250 ALL cases and 100 controls. The subjects were stratified by age and categorized into pediatrics (1–18 years) and adults (19–54 years). TEL and expression patterns of CTC1, OBFC1, and TERT genes were determined by qPCR. The univariable logistic regression analysis was performed to determine the association of gene expression with ALL, and the results were adjusted for age and sex in multivariable analyses. Pediatric and adult cases did not reflect any change in telomere lengths relative to controls. However, expression of CTC1, OBFC1, and TERT genes were induced among ALL cases. Multivariable logistic regression analyses showed association of CTC1 with ALL in pediatric [β estimate (standard error (SE)= −0.013 (0.007), p = 0.049, and adults [0.053 (0.023), p = 0.025]. The association of CTC1 remained significant when taken together with OBFC1 and TERT in a multivariable model. Furthermore, CTC1 showed significant association with B-cell ALL [−0.057(0.017), p = 0.002) and T-cell ALL [−0.050 (0.018), p = 0.008] in pediatric group while no such association was noted in adults. Together, our findings demonstrated that telomere modulating genes, particularly CTC1, are strongly associated with ALL. Therefore, CTC1 can potentially be used as a risk biomarker for the identification of ALL in both pediatrics and adults
Epithelial Cell Adhesion Molecule (EpCAM) Expression Can Be Modulated via NFκB
The epithelial cell adhesion molecule (EpCAM) is considered an essential proliferation signature in cancer. In the current research study, qPCR induced expression of EpCAM was noted in acute lymphoblastic leukemia (ALL) cases. Costunolide, a sesquiterpene lactone found in crepe ginger and lettuce, is a medicinal herb with anticancer properties. Expression of EpCAM and its downstream target genes (Myc and TERT) wasdownregulated upon treatment with costunolide in Jurkat cells. A significant change in the telomere length of Jurkat cells was not noted at 72 h of costunolide treatment. An in silico study revealed hydrophobic interactions between EpCAM extracellular domain and Myc bHLH with costunolide. Reduced expression of NFκB, a transcription factor of EpCAM, Myc, and TERT in costunolide-treated Jurkat cells, suggested that costunolide inhibits gene expression by targeting NFκB and its downstream targets. Overall, the study proposes that costunolide could be a promising therapeutic biomolecule for leukemia
Evaluation of the Effect of Elite Jojoba Lines on the Chemical Properties of their Seed Oil
Jojoba oil (JO) extracted from seeds has outstanding properties, including anti-inflammatory, antioxidant, and antibacterial activities, and can be stored forlong periodsof time. The unique properties of jojoba oil depend on its chemical composition; therefore, the effect of the jojoba genotype on the chemical properties and active components of the seed oil was evaluated in this study. Oil samples were collected from 15 elite Egyptian jojoba lines. The chemical composition, such as moisture, crude fiber, crude oil, ash, and crude protein of elite lines’ seeds was determined to investigate the variation among them based on the jojoba genotype. In addition, the iodine value was obtained to measure the degree of jojoba oil unsaturation, whereas the peroxide number was determined as an indicator of the damage level in jojoba oil. Fatty acid composition was studied to compare elite jojoba lines. Fatty acid profiles varied significantly depending on the jojoba genotype. Gadoleic acid exhibited the highest percentage value (67.85–75.50%) in the extracted jojoba oil, followed by erucic acid (12.60–14.81%) and oleic acid (7.86–10.99%). The iodine value, peroxide number, and fatty acid composition of the tested elite jojoba lines were compared withthose reported by the International Jojoba Export Council (IJEC). The results showed that the chemical properties of jojoba oils varied significantly, depending on the jojoba genotype
Growth, Yield, Quality, and Phytochemical Behavior of Three Cultivars of Quinoa in Response to Moringa and Azolla Extracts under Organic Farming Conditions
Increased demand for quinoa as a functional food has resulted in more quinoa-growing areas and initiatives to increase grain production, particularly in organic agriculture. Quinoa seeds are a superfood with incredible nutritional benefits. They are abundant in secondary metabolites with significant medicinal activity. This report was consequently performed to investigate whether Azolla fliculoides (AE) or moringa leaf extract (MLE) foliar spray can be supplemented as organic extracts to enhance quinoa growth and productivity under organic farming. Three quinoa cultivars, KVL–SRA2 (C1), Chipaya (C2), and Q–37 (C3), were grown organically and subjected to foliar spraying with AE or MLE at a 20% ratio, as well as their combination (AE+MLE). Plant performance of the three cultivars was significantly enhanced by MLE or AE applications as compared with control plants. The highest outputs were obtained by AE+MLE treatment, which significantly increased the seed yield by about 29% as compared with untreated plants. Seed quality exhibited a marked increase in response to AE+MLE that was superior in this regard as it showed higher protein, carbohydrates, saponine, tannins, phenolics, and flavonoids content. The C3-cultivar demonstrated the highest productivity, saponine, and flavonoids levels as compared to the other cultivars. Overall, the current study indicated that foliar spray with AE+MLE could enhance growth and productivity as well as quality and pharmaceutical active ingredients of quinoa cultivars grown under farming conditions
Foliar Application of Nano, Chelated, and Conventional Iron Forms Enhanced Growth, Nutritional Status, Fruiting Aspects, and Fruit Quality of Washington Navel Orange Trees (Citrus sinensis L. Osbeck)
Iron (Fe) is required for most metabolic processes, including DNA synthesis, respiration, photosynthesis, and chlorophyll biosynthesis; however, Fe deficiency is common in arid regions, necessitating additional research to determine the most efficient form of absorbance. Nano-fertilizers have characteristics that are not found in their traditional equivalents. This research was implemented on Washington navel orange trees (Citrus sinensis L. Osbeck) to investigate the effect of three iron forms—nano (Fe-NPs), sulfate (FeSO4), and chelated (Fe-chelated)—as a foliar spray on the growth, fruiting aspects, and nutritional status of these trees compared to control. The highest values of the tested parameters were reported when the highest Fe-NPs level and the highest Fe-chelated (EDTA) rate were used. Results obtained here showed that the spraying of the Washington navel orange trees grown under similar environmental conditions and horticulture practices adopted in the current experiment with Fe-NPs (nanoform) and/or Fe-chelated (EDTA) at 0.1% is a beneficial application for enhancing vegetative growth, flower set, tree nutritional status, and fruit production and quality. Application of Fe-NPs and Fe-chelated (EDTA, 0.1%) increased yield by 32.0% and 25% and total soluble solids (TSS) by 18.5% and 17.0%, respectively, compared with control. Spraying Washington navel orange trees with nano and chelated iron could be considered a significant way to improve vegetative growth, fruit production, quality, and nutritional status while also being environmentally preferred in the arid regions
Bio-Growth Stimulants Impact Seed Yield Products and Oil Composition of Chia
Chia (Salvia hispanica L.) is a specialty crop capable of providing healthy food and metabolites. The goal of our study was to explore the possibility of expanding seed yield, oil production, and metabolites of chia in response to amino acid, barthenosteriode, and algae extract treatments used as bio-stimulants. The experiment was conducted in the field in a randomized complete block design with three repeats. The treatments were (1) control (spray only with water), (2) amino acids with nutrients (2 mL/L vs. 4 mL/L), (3) brassinolide (5 mL/L vs. 10 mL/L), and algae extract (2 mL/L vs. 4 mL/L). The growth and yield measurements of chia, such as chlorophyll, carotenoids, amino acids, indoles, phenols, macro- and micronutrients, carbohydrates, total oil, and fatty acids were analyzed. The chia plants sprayed with growth stimulant materials showed increases in most studied characteristics, particularly algae extract at 4 mL/L, followed by algae extract at 2 mL/L during the first and second seasons. Meanwhile, amino acids at 4 mL/L led to the third-highest increases in most cases. Conversely, all bio-stimulant treatments decreased total phenols in leaves (mg/100 g f.w.), especially seaweed at 4 mL/L, compared to high levels in the control during both seasons. Control plants showed the lowest levels of the measurements mentioned previously when scored by barthenosteriode at 5 mL/L during the first and second seasons. GLC for fixed oil in chia showed the recognition of four biocomponents. i.e., oleic, linoleic, palmitic, and α-α linolenic acids. The main biocomponent was α-α linolenic acid and reach (49.7 to 57.9%). The application of seaweed at 4 mL/L could be exploited to improve growth, seed crop, fixed oil production, chemicals and bio-constituents, especially the fixed oil composition of chia (Salvia hispanica L.) plant
Optimization of Supercritical Carbon Dioxide Extraction of <i>Saussurea costus</i> Oil and Its Antimicrobial, Antioxidant, and Anticancer Activities
Saussurea costus is a medicinal plant with different bioactive compounds that have an essential role in biomedicine applications, especially in Arab nations. However, traditional extraction methods for oils can lead to the loss of some volatile and non-volatile oils. Therefore, this study aimed to optimize the supercritical fluid extraction (SFE) of oils from S. costus at pressures (10, 20, and 48 MPa). The results were investigated by GC/MS analysis. MTT, DPPH, and agar diffusion methods assessed the extracted oils’ anticancer, antioxidant, and antimicrobial action. GC/MS results showed that elevated pressure from 10 to 20 and 48 MPa led to the loss of some valuable compounds. In addition, the best IC50 values were recorded at 10 MPa on HCT, MCF-7, and HepG-2 cells at about 0.44, 0.46, and 0.74 μg/mL, respectively. In contrast, at 20 MPa, the IC50 values were about 2.33, 6.59, and 19.0 μg/mL, respectively, on HCT, MCF-7, and HepG-2 cells, followed by 48 MPa, about 36.02, 59.5, and 96.9 μg/mL. The oil extract at a pressure of 10 MPa contained much more of á-elemene, dihydro-à -ionone, patchoulene, á-maaliene, à -selinene, (-)-spathulenol, cedran-diol, 8S,13, elemol, eremanthin, á-guaiene, eudesmol, ç-gurjunenepoxide-(2), iso-velleral, and propanedioic acid and had a higher antioxidant activity (IC50 14.4 μg/mL) more than the oil extract at 20 and 48 MPa. In addition, the inhibitory activity of all extracts was higher than gentamicin against all tested bacteria. One of the more significant findings from this study is low pressure in SFE enhancement, the extraction of oils from S. costus, for the first time. As a result, the SFE is regarded as a good extraction technique since it is both quick and ecologically friendly. Furthermore, SFE at 10 MPa increased the production and quality of oils, with high antioxidant activity and a positive effect on cancer cells and pathogens