18 research outputs found

    Loss of Protein Stability and Function Caused by P228L Variation in NADPH-Cytochrome P450 Reductase Linked to Lower Testosterone Levels.

    Get PDF
    Cytochrome P450 oxidoreductase (POR) is the redox partner of steroid and drug-metabolising cytochromes P450 located in the endoplasmic reticulum. Mutations in POR cause a broad range of metabolic disorders. The POR variant rs17853284 (P228L), identified by genome sequencing, has been linked to lower testosterone levels and reduced P450 activities. We expressed the POR wild type and the P228L variant in bacteria, purified the proteins, and performed protein stability and catalytic functional studies. Variant P228L affected the stability of the protein as evidenced by lower unfolding temperatures and higher sensitivity to urea denaturation. A significant decline in the rate of electron transfer to cytochrome c and thiazolyl blue tetrazolium (MTT) was observed with POR P228L, while activities of CYP3A4 were reduced by 25% and activities of CYP3A5 and CYP2C9 were reduced by more than 40% compared with WT POR. The 17,20 lyase activity of CYP17A1, responsible for the production of the main androgen precursor dehydroepiandrosterone, was reduced to 27% of WT in the presence of the P228L variant of POR. Based on in silico and in vitro studies, we predict that the change of proline to leucine may change the rigidity of the protein, causing conformational changes in POR, leading to altered electron transfer to redox partners. A single amino acid change can affect protein stability and cause a severe reduction in POR activity. Molecular characterisation of individual POR mutations is crucial for a better understanding of the impact on different redox partners of POR

    Synthesis and Structure-Activity Relationships of Novel Non-Steroidal CYP17A1 Inhibitors as Potential Prostate Cancer Agents.

    Get PDF
    Twenty new compounds, targeting CYP17A1, were synthesized, based on our previous work on a benzimidazole scaffold, and their biological activity evaluated. Inhibition of CYP17A1 is an important modality in the treatment of prostate cancer, which remains the most abundant cancer type in men. The biological assessment included CYP17A1 hydroxylase and lyase inhibition, CYP3A4 and P450 oxidoreductase (POR) inhibition, as well as antiproliferative activity in PC3 prostate cancer cells. The most potent compounds were selected for further analyses including in silico modeling. This combined effort resulted in a compound (comp 2, IC50 1.2 µM, in CYP17A1) with a potency comparable to abiraterone and selectivity towards the other targets tested. In addition, the data provided an understanding of the structure-activity relationship of this novel non-steroidal compound class

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Outcomes of elective liver surgery worldwide: a global, prospective, multicenter, cross-sectional study

    Get PDF
    Background: The outcomes of liver surgery worldwide remain unknown. The true population-based outcomes are likely different to those vastly reported that reflect the activity of highly specialized academic centers. The aim of this study was to measure the true worldwide practice of liver surgery and associated outcomes by recruiting from centers across the globe. The geographic distribution of liver surgery activity and complexity was also evaluated to further understand variations in outcomes. Methods: LiverGroup.org was an international, prospective, multicenter, cross-sectional study following the Global Surgery Collaborative Snapshot Research approach with a 3-month prospective, consecutive patient enrollment within January–December 2019. Each patient was followed up for 90 days postoperatively. All patients undergoing liver surgery at their respective centers were eligible for study inclusion. Basic demographics, patient and operation characteristics were collected. Morbidity was recorded according to the Clavien–Dindo Classification of Surgical Complications. Country-based and hospital-based data were collected, including the Human Development Index (HDI). (NCT03768141). Results: A total of 2159 patients were included from six continents. Surgery was performed for cancer in 1785 (83%) patients. Of all patients, 912 (42%) experienced a postoperative complication of any severity, while the major complication rate was 16% (341/2159). The overall 90-day mortality rate after liver surgery was 3.8% (82/2,159). The overall failure to rescue rate was 11% (82/ 722) ranging from 5 to 35% among the higher and lower HDI groups, respectively. Conclusions: This is the first to our knowledge global surgery study specifically designed and conducted for specialized liver surgery. The authors identified failure to rescue as a significant potentially modifiable factor for mortality after liver surgery, mostly related to lower Human Development Index countries. Members of the LiverGroup.org network could now work together to develop quality improvement collaboratives

    Exploring Novel Variants of the Cytochrome P450 Reductase Gene (POR) from the Genome Aggregation Database by Integrating Bioinformatic Tools and Functional Assays.

    Get PDF
    Cytochrome P450 oxidoreductase (POR) is an essential redox partner for steroid and drug-metabolizing cytochromes P450 located in the endoplasmic reticulum. Mutations in POR lead to metabolic disorders, including congenital adrenal hyperplasia, and affect the metabolism of steroids, drugs, and xenobiotics. In this study, we examined approximately 450 missense variants of the POR gene listed in the Genome Aggregation Database (gnomAD) using eleven different in silico prediction tools. We found that 64 novel variants were consistently predicted to be disease-causing by most tools. To validate our findings, we conducted a population analysis and selected two variations in POR for further investigation. The human POR wild type and the R268W and L577P variants were expressed in bacteria and subjected to enzyme kinetic assays using a model substrate. We also examined the activities of several cytochrome P450 proteins in the presence of POR (WT or variants) by combining P450 and reductase proteins in liposomes. We observed a decrease in enzymatic activities (ranging from 35% to 85%) of key drug-metabolizing enzymes, supported by POR variants R288W and L577P compared to WT-POR. These results validate our approach of curating a vast amount of data from genome projects and provide an updated and reliable reference for diagnosing POR deficiency

    Variability in human drug metabolizing cytochrome P450 CYP2C9, CYP2C19 and CYP3A5 activities caused by genetic variations in cytochrome P450 oxidoreductase.

    Get PDF
    A broad spectrum of human diseases are caused by mutations in the NADPH cytochrome P450 oxidoreductase (POR). Cytochrome P450 proteins perform several reactions, including the metabolism of steroids, drugs, and other xenobiotics. In 2004 the first human patients with defects in POR were reported, and over 250 variations in POR are known. Information about the effects of POR variants on drug metabolizing enzymes is limited and has not received much attention. By analyzing the POR sequences from genomics databases, we identified potentially disease-causing variations and characterized these by in vitro functional studies using recombinant proteins. Proteins were expressed in bacteria and purified for activity assays. Activities of cytochrome P450 enzymes were tested in vitro using liposomes prepared with lipids into which P450 and P450 reductase proteins were embedded. Here we are reporting the effect of POR variants on drug metabolizing enzymes CYP2C9, CYP2C19, and CYP3A5 which are responsible for the metabolism of many drugs. POR Variants A115V, T142A, A281T, P284L, A287P, and Y607C inhibited activities of all P450 proteins tested. Interestingly, the POR variant Q153R showed a reduction of 20-50% activities with CYP2C9 and CYP2C19 but had a 400% increased activity with CYP3A5. The A287P is most common POR mutation found in patients of European origin, and significantly inhibited drug metabolism activities which has important consequences for monitoring and treatment of patients. In vitro, functional assays using recombinant proteins provide a useful model for establishing the metabolic effect of genetic mutations. Our results indicate that detailed knowledge about POR variants is necessary for correct diagnosis and treatment options for persons with POR deficiency and the role of changes in drug metabolism and toxicology due to variations in POR needs to be addressed

    Inhibition of placental CYP19A1 activity remains as a valid hypothesis for 46,XX virilization in P450 oxidoreductase deficiency

    Get PDF
    Cytochrome P450 oxidoreductase deficiency (PORD), caused by mutations in P450 oxidoreductase (POR), is a disorder of steroid metabolism often characterized by disordered sexual development (1⇓–3). POR is required for enzymatic activities of multiple cytochrome P450 enzymes (4). In PNAS, Reisch et al. (5) propose “alternative pathway androgen biosynthesis” as the cause of 46,XX virilization in PORD. We are pleased to see the expansion of the role of alternative pathway in sexual development previously demonstrated by us in 46,XY individuals (6), but have some concerns regarding the assumption that virilization of 46,XX individuals in PORD is mainly via an alternative pathway. The choice of steroid analysis by Reisch et al. (5) from only 46,XY individuals to propose a hypothesis for 46,XX virilization is baffling. Another recent study found low to undetectable levels of 17-hydroxy-dihydroprogesterone, 17-hydroxy-allopregnanolone, and androsterone, the steroids in alternative pathway produced via CYP17A1, in the 46,XX fetal adrenals and attributed it to a lack of SRD5A1 expression in fetal adrenal (7). We have previously reported that mutations in the key enzymes of the alternative pathway cause 46,XY undervirilization (6). By contrast, mutations in aromatase (CYP19A1) cause genital virilization in 46,XX individuals (8), which prompted us to reexamine the results of Reisch et al. (5)

    Loss of protein stability and function caused by a single point mutation (P228L) in the Cytochrome P450 Oxidoreductase.

    No full text
    Cytochrome P450 oxidoreductase (POR) is the obligatory redox partner of steroid and drug metabolizing cytochrome P450s located in the endoplasmic reticulum. Mutations in POR cause a broad range of disorders like congenital adrenal hyperplasia. Genome sequencing studies have revealed the existence of a POR missense variant P228L which was linked with reduced function of some P450 enzymes. We aimed to expand the enzymatic studies of POR variant P228L for its role in human metabolism. We expressed human wild type and the P228L variant POR in bacteria and purified the proteins by Affinity Chromatography. We tested the stability of the proteins using fast proteolysis and performed kinetics assays of POR activities using small molecules substrates. POR (WT or P228L) were mixed with purified cytochrome P450 proteins and activities of cytochrome P450 proteins were assayed. The single point mutation P228L had reduced thermal stability indicated by a lower melting point comparing to the WT. In the kinetics studies, the rates of the reactions with P228L were considerably lower than the WT but the Km did not show substantial changes. We observed a decrease in the enzymatic activities of CYP3A5 and CYP2C9 of more than 40% with P228L form of POR comparing to WT. A single change in the amino acid sequence can affect the protein stability and cause a severe reduction in POR activity. Molecular characterization of POR mutations is crucial to have a better understanding of the impact on the functionality of its redox Partners

    Variability in Loss of Multiple Enzyme Activities Due to the Human Genetic Variation P284T Located in the Flexible Hinge Region of NADPH Cytochrome P450 Oxidoreductase.

    Get PDF
    Cytochromes P450 located in the endoplasmic reticulum require NADPH cytochrome P450 oxidoreductase (POR) for their catalytic activities. Mutations in POR cause multiple disorders in humans related to the biosynthesis of steroid hormones and also affect drug-metabolizing cytochrome P450 activities. Electron transfer in POR occurs from NADH to FAD to FMN, and the flexible hinge region in POR is essential for domain movements to bring the FAD and FMN close together for electron transfer. We tested the effect of variations in the hinge region of POR to check if the effects would be similar across all redox partners or there will be differences in activities. Here we are reporting the effects of a POR genetic variant P284T located in the hinge region of POR that is necessary for the domain movements and internal electron transfer between co-factors. Human wild-type and P284T mutant of POR and cytochrome P450 proteins were expressed in bacteria, purified, and reconstituted for enzyme assays. We found that for the P284T variant of POR, the cytochrome c reduction activity was reduced to 47% of the WT and MTT reduction was reduced to only 15% of the WT. No impact on ferricyanide reduction activity was observed, indicating intact direct electron transfer from FAD to ferricyanide, but a severe loss of CYP19A1 (aromatase) activity was observed (9% of WT). In the assays of drug-metabolizing cytochrome P450 enzymes, the P284T variant of POR showed 26% activity for CYP2C9, 44% activity for CYP2C19, 23% activity for CYP3A4, and 44% activity in CYP3A5 assays compared to the WT POR. These results indicate a severe effect on several cytochrome P450 activities due to the P284T variation in POR, which suggests a negative impact on both the steroid as well as drug metabolism in the individuals carrying this variation. The negative impact of P284T mutation in the hinge region of POR seems to be due to disruption of FAD to FMN electron transfer. These results further emphasize the importance of hinge region in POR for protein flexibility and electron transfer within POR as well as the interaction of POR with different redox partners

    A Novel Mutation in the INSR Gene Causes Severe Insulin Resistance and Rabson–Mendenhall Syndrome in a Paraguayan Patient

    Get PDF
    Rabson–Mendenhall syndrome (RMS) is a rare autosomal recessive disorder characterized by severe insulin resistance, resulting in early-onset diabetes mellitus. We report the first case of RMS in a Paraguayan patient. The patient is a 6-year-old girl who presented with hypertrichosis, acanthosis nigricans, nephrocalcinosis, and elevated levels of glucose and insulin that served as diagnostic indicators for RMS. Genetic testing by next-generation sequencing (NGS) revealed two pathogenic variants in exons 2 and 19 of the INSR gene: c.332G>T (p.Gly111Val) and c.3485C>T (p.Ala1162Val), in combined heterozygosis. The novel INSR c. 332G>T variant leads to the substitution of glycine to valine at position 111 in the protein, and multiple in silico software programs predicted it as pathogenic. The c.3485C>T variant leads to the substitution of alanine to valine at position 1162 in the protein previously described for insulin resistance and RMS. The management of RMS is particularly challenging in children, and the use of metformin is often limited by its side effects. The patient was managed with nutritional measures due to the early age of onset. This report expands the knowledge of RMS to the Paraguayan population and adds a novel pathogenic variant to the existing literature
    corecore