4 research outputs found
The staircase method: integrals for periodic reductions of integrable lattice equations
We show, in full generality, that the staircase method provides integrals for
mappings, and correspondences, obtained as traveling wave reductions of
(systems of) integrable partial difference equations. We apply the staircase
method to a variety of equations, including the Korteweg-De Vries equation, the
five-point Bruschi-Calogero-Droghei equation, the QD-algorithm, and the
Boussinesq system. We show that, in all these cases, if the staircase method
provides r integrals for an n-dimensional mapping, with 2r<n, then one can
introduce q<= 2r variables, which reduce the dimension of the mapping from n to
q. These dimension-reducing variables are obtained as joint invariants of
k-symmetries of the mappings. Our results support the idea that often the
staircase method provides sufficiently many integrals for the periodic
reductions of integrable lattice equations to be completely integrable. We also
study reductions on other quad-graphs than the regular 2D lattice, and we prove
linear growth of the multi-valuedness of iterates of high-dimensional
correspondences obtained as reductions of the QD-algorithm.Comment: 40 pages, 23 Figure