54 research outputs found

    Desarrollo y optimización de nuevas formulaciones de biopolímeros con principios activos para aplicaciones en el sector envase-embalaje

    Full text link
    Tesis por compendio[ES] Esta tesis doctoral tuvo como objetivo principal el estudio, desarrollo y caracterización de nuevos materiales poliméricos mediante el uso de diferentes matrices poliméricas de origen natural y biodegradables, así como también de aditivos naturales y residuos agroindustriales, todo ello con la finalidad de obtener biopolímeros útiles en el sector envase y embalaje. Una de las matrices seleccionadas para su uso fue el bio-poli(etileno) de alta densidad (bio-HDPE). El bio-HDPE es un material que se puede obtener a partir de fuentes naturales renovables. Sin embargo, no es susceptible de biodegradación, es por ello que se planteó la adición de cargas y aditivos naturales a la matriz polimérica, con la finalidad de obtener nuevos materiales en los que el uso de estas cargas permita una disminución de la cantidad de matriz polimérica necesaria, además de la posibilidad de proporcionarle al polímero nuevas características y propiedades gracias a los principios activos (fenoles, flavonoides, etc.) que poseen en su estructura. Las cargas utilizadas fueron por un lado harina de piel de caqui (PPF) y, por otro, lignina Kraft (KL). Teniendo en consideración la baja compatibilidad que existe entre la matriz polimérica y las cargas naturales debido básicamente a su inherente hidrofobicidad e hidrofilicidad, respectivamente, se propuso el uso de diferentes técnicas de compatibilización. Adicionalmente, teniendo en consideración que las cargas de origen natural tienen diferentes principios activos en su estructura, algunos de ellos con capacidad antioxidante se analizó su efecto en las propiedades térmicas de las muestras con (PPF). El estudio continuó con la utilización de poli(ésteres) como el poli(ácido láctico) (PLA) y poli(butilén succinato) (PBS). En el caso del PLA se buscó mejorar la fragilidad propia del material mediante la adición de un oligómero de ácido láctico (OLA) como agente plastificante y se obtuvo que a mayor cantidad de plastificante la ductilidad del PLA incrementaba. Adicionalmente, con el fin de enfocar el material al uso en el sector de envase y embalaje, se buscó mejorar sus propiedades barrera mediante la incorporación de nanomateriales, concretamente nanotubos de haloisita (HNTs). En el caso del PBS, si bien es un material biodegradable, su obtención aún depende de fuentes petroquímicas total o parcialmente, además que su producción implica un alto costo, por tanto, es importante la búsqueda de alternativas que permitan combinarlo con recursos naturales, para lograr un material menos costoso y más respetuoso con el medio ambiente. Es por ello que se consideró el uso de harina de cáscara de pistacho (SPF) como carga natural. Una última fase de la tesis consistió en el aprovechamiento de los residuos agroindustriales, mediante la extracción de algunos de sus biopolímeros, entre ellos proteínas, lignina y nanocristales de celulosa (CNC), los cuales luego fueron combinados, con la finalidad de obtener películas para su posible uso en el sector envase y embalaje. La lignina y los CNC fueron obtenidos a partir de las piñas de pino y utilizados como materiales de refuerzo para la matriz de proteína procedente del haba. La incorporación de dichos compuestos en la película de proteína dio lugar a un incremento en las propiedades mecánicas en términos de módulo de Young y resistencia a la tracción, además tuvo repercusión en las propiedades barrera, reduciendo la permeabilidad al vapor de agua y al oxígeno. En las muestras con CNC se observó un incremento en la hidrofobicidad de las películas obtenidas, relacionado también con la disminución en el contenido de humedad y la solubilidad reportados. Por tanto, de manera general se puede decir que con el trabajo desarrollado se pudieron obtener materiales biopoliméricos con características prometedoras para su aplicación en el sector envase y embalaje, planteando con ello opciones al uso de materiales poliméricos derivados del petróleo.[CAT] Aquesta tesi doctoral va tindre com a objectiu principal l'estudi, desenvolupament i caracterització de nous materials polimèrics mitjançant l'ús de diferents matrius polimèriques d'origen natural i biodegradables, així com també d'additius naturals i residus agroindustrials, tot això amb la finalitat d'obtindre biopolímers útils en el sector envase i embalatge. Una de les matrius seleccionades per al seu ús va ser el bio-poli(etilé) d'alta densitat (bio-HDPE). El bio-HDPE és un material que es pot obtindre a partir de fonts naturals renovables. No obstant això, no és susceptible de biodegradació, és per això que es va plantejar l'addició de càrregues i additius naturals a la matriu polimèrica, a més de la possibilitat de proporcionar-li al polímer noves característiques i propietats gràcies als principis actius (fenols, flavonoides, etc.) que posseeixen en la seua estructura. Les càrregues utilitzades van ser d'una banda farina de pell de caqui (PPF) i, per un altre, lignina Kraft (KL). Tenint en consideració la baixa compatibilitat que existeix entre la matriu polimèrica i les càrregues naturals degut bàsicament a la seua inherent hidrofobicitat i hidrofilicitat, respectivament, es va proposar l'ús de diferents tècniques de compatibilització. Addicionalment, tenint en consideració que les càrregues d'origen natural tenen diferents principis actius en la seua estructura, alguns d'ells amb capacitat antioxidant, es va analitzar el seu efecte en les propietats tèrmiques de les mostres mostres amb (PPF). L'estudi va continuar amb la utilització de polièsters com el poli(àcid làctic) (PLA) i poli(butilén succinat) (PBS). En el cas del PLA es va buscar millorar la fragilitat pròpia del material mitjançant l'addició d'un oligòmer d'àcid làctic (ONA) com a agent plastificant i es va obtindre que a major quantitat de plastificant la ductilitat del PLA incrementava. Addicionalment, amb la fi que enfocar el material a l'ús en el sector d'envàs i embalatge, es va buscar millorar les seues propietats barrera mitjançant la incorporació de nanomaterials, concretament nanotubs d'haloisita (HNTs). En el cas del PBS, si bé és un material biodegradable, la seua obtenció encara depén de fonts petroquímiques totalment o parcialment, a més que la seua producció implica un alt cost, per tant, és important la cerca d'alternatives que permeten combinar-lo amb recursos naturals, per a aconseguir un material menys costós i més respectuós amb el medi ambient. És per això que es va considerar l'ús de farina de corfa de pistatxo (SPF) com a càrrega natural. Una última fase de la tesi va consistir en l'aprofitament dels residus agroindustrials, mitjançant l'extracció d'alguns dels seus biopolímers, entre ells proteïnes, lignina i nanocristals de cel·lulosa (CNC), els quals després van ser combinats, amb la finalitat d'obtindre pel·lícules per al seu possible ús en el sector envase i embalatge. La lignina i els CNC van ser obtinguts a partir de les pinyes de pi i utilitzats com a materials de reforç per a la matriu de proteïna procedent de la fava. La incorporació d'aquests compostos en la pel·lícula de proteïna va donar lloc a un increment en les propietats mecàniques en termes de mòdul de Young i resistència a la tracció, a més va tindre repercussió en les propietats barrera, reduint la permeabilitat al vapor d'aigua i a l'oxigen. En les mostres amb CNC es va observar un increment en la hidrofobicitat de les pel·lícules obtingudes, relacionat també amb la disminució en el contingut d'humitat i la solubilitat reportats. Per tant, de manera general es pot dir que amb el treball desenvolupat es van poder obtindre materials biopolimerics amb característiques prometedores per a la seua aplicació en el sector envase i embalatge, plantejant amb això opcions a l'ús de materials polimèrics derivats del petroli.[EN] The main objective of this doctoral thesis was the study, development, and characterization of new polymeric materials using different polymeric matrices of natural origin and biodegradables, as well as natural additives and agro-industrial wastes, all with the aim of obtaining biopolymers useful in the packaging sector. One of the matrices selected for use was high-density bio-poly(ethylene) (bio-HDPE). Bio-HDPE is a material that can be obtained from natural renewable sources. However, it is not susceptible to biodegradation, which is why the addition of fillers and natural additives to the polymeric matrix was proposed. All of this with the purpose of obtaining new materials in which the use of these fillers allows a decrease in the amount of polymeric matrix required. In addition to the possibility of providing the polymer with new characteristics and properties thanks to the active principles (phenols, flavonoids, etc.) contained in its structure. The fillers used were persimmon peel flour (PPF) and Kraft lignin (KL). Considering the low compatibility between the polymeric matrix and the natural fillers, basically due to their inherent hydrophobicity and hydrophilicity, respectively, the use of different compatibilization techniques was proposed. In addition, taking into consideration that the fillers of natural origin have different active principles in their structure, some of them with antioxidant capacity, their effect on the thermal properties of the samples with (PPF) was analyzed. The study continued with the use of polyesters such as poly(lactic acid) (PLA) and poly(butylene succinate) (PBS). In the case of PLA, the aim was to improve the fragility of the material by adding a lactic acid oligomer (OLA) as a plasticizing agent. It was found that the greater the amount of plasticizer, the higher the ductility of PLA. Additionally, in order to focus the material for use in the packaging sector, it was sought to improve its barrier properties by incorporating nanomaterials, specifically halloysite nanotubes (HNTs). In the case of PBS, although it is a biodegradable material, its obtention still depends totally or partially on petrochemical sources, and its production implies a high cost; therefore, it is crucial to look for alternatives that allow combining it with natural resources, in order to achieve a less expensive and more environmentally friendly material. For this reason, pistachio shell flour (SPF) was considered as a natural filler. A final phase of the thesis consisted of using natural resources and agro-industrial wastes by extracting some of their biopolymers, including proteins, lignin, and cellulose nanocrystals (CNC), which were then combined in order to obtain films for possible use in the packaging sector. Lignin and CNCs were obtained from pine cones and used as reinforcing materials for the protein matrix obtained from faba beans. Incorporating these compounds in the protein film resulted increased mechanical properties in terms of Young's modulus and tensile strength, and also impacted on the barrier properties, reducing the permeability to water vapor and oxygen. In the CNC samples, an increase in the film's hydrophobicity was observed, which is also related to the decrease in moisture content and solubility reported. Therefore, in general, it is possible to say that with the work developed, it was possible to obtain biopolymeric materials with promising characteristics for their application in the packaging sector, thus offering options for the use of petroleum-derived polymeric materials.This research is a part of the grant PID2020-116496RB-C22 funded by MICINN/AEI/10.13039/501100011033, and the projects AICO/2021/025 and CIGE/2021/094 funded by Generalitat Valenciana-GVA. Funding for open access charge: Universitat Politècnica de València. The authors want to thank the Spanish Ministry of Science and Innovation, gthe Ministry of Science and Innovation (MICINN) [MAT2017-84909-C2-2-R]. for funding this research. S. Rojas-Lema is a recipient of a Santiago Grisolia grant from Generalitat Valenciana (GVA) (GRISOLIAP/2019/132).Rojas Lema, SP. (2022). Desarrollo y optimización de nuevas formulaciones de biopolímeros con principios activos para aplicaciones en el sector envase-embalaje [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/191458Compendi

    Peroxide-Induced Synthesis of Maleic Anhydride-Grafted Poly(butylene succinate) and Its Compatibilizing Effect on Poly(butylene succinate)/Pistachio Shell Flour Composites

    Full text link
    [EN] Framing the Circular Bioeconomy, the use of reactive compatibilizers was applied in order to increase the interfacial adhesion and, hence, the physical properties and applications of green composites based on biopolymers and food waste derived lignocellulosic fillers. In this study, poly(butylene succinate) grafted with maleic anhydride (PBS-g-MAH) was successfully synthetized by a reactive melt-mixing process using poly(butylene succinate) (PBS) and maleic anhydride (MAH) that was induced with dicumyl peroxide (DCP) as a radical initiator and based on the formation of macroradicals derived from the hydrogen abstraction of the biopolymer backbone. Then, PBS-g-MAH was used as reactive compatibilizer for PBS filled with different contents of pistachio shell flour (PSF) during melt extrusion. As confirmed by Fourier transform infrared (FTIR), PBS-g-MAH acted as a bridge between the two composite phases since it was readily soluble in PBS and could successfully form new esters by reaction of its multiple MAH groups with the hydroxyl (-OH) groups present in cellulose or lignin of PSF and the end ones in PBS. The resultant compatibilized green composites were, thereafter, shaped by injection molding into 4-mm thick pieces with a wood-like color. Results showed significant increases in the mechanical and thermomechanical rigidity and hardness, meanwhile variations on the thermal stability were negligible. The enhancement observed was related to the good dispersion and the improved filler-matrix interfacial interactions achieved by PBS-g-MAH and also to the PSF nucleating effect that increased the PBS's crystallinity. Furthermore, water uptake of the pieces progressively increased as a function of the filler content, whereas the disintegration in controlled compost soil was limited due to their large thickness.This research was funded by the Ministry of Science and Innovation (MICI) project number MAT2017-84909-C2-2-R.Rojas-Lema, SP.; Arévalo, J.; Gómez-Caturla, J.; Garcia-Garcia, D.; Torres-Giner, S. (2021). Peroxide-Induced Synthesis of Maleic Anhydride-Grafted Poly(butylene succinate) and Its Compatibilizing Effect on Poly(butylene succinate)/Pistachio Shell Flour Composites. Molecules. 26(19):1-28. https://doi.org/10.3390/molecules26195927S128261

    Improved Performance of Environmentally Friendly Blends of Biobased Polyethylene and Kraft Lignin Compatibilized by Reactive Extrusion with Dicumyl Peroxide

    Full text link
    [EN] In this work, different contents (0.25, 0.50, 0.75, and 1 phr) of dicumyl peroxide (DCP) are incorporated into the bio-based high-density polyethylene (bioPE)/kraft lignin (KL) blends with a composition of 80 and 20 wt%, respectively with the aim of improving overall performance. The samples are obtained by reactive extrusion and injection-molding process, and then their overall performance is assessed by tensile tests, thermal analysis, optical and surface appearance, and wettability studies. The obtained mechanical properties confirm the successful interaction between bioPE and KL due to the addition of organic peroxide, which plays a key role in compatibilization. In particular, bioPE/KL blends with 1 phr of DCP achieve an increase in elongation at break of about 300% together with a noticeable increase in the impact strength of about 29% higher than the uncompatibilized bioPE/KL blend, while the tensile modulus decreases 42%. In addition, images obtained by field emission scanning electron microscopy show that the presence of DCP in the blends enhances better dispersion of KL into the bioPE matrix. The wettability analysis indicates that KL and DCP affect the hydrophobicity of the neat bioPE. Therefore, the resultant blends can be considered as potential sustainable polymers with balanced properties.S.R.-L. is a recipient of a Santiago Grisolía grant from Generalitat Valenciana (GVA) (GRISOLIAP/2019/132). D.L. thanks Universitat Politècnica de València (UPV) for the grant received through the PAID-01-18 program. J.I.-M. thanks the Spanish Ministry of Science, Innovation and Universities for his FPU grant (FPU19/01759). Microscopy services at UPV are acknowledged for their help in using and collecting FESEM images.Rojas-Lema, SP.; Ivorra-Martínez, J.; Lascano-Aimacaña, DS.; Garcia-Garcia, D.; Balart, R. (2021). Improved Performance of Environmentally Friendly Blends of Biobased Polyethylene and Kraft Lignin Compatibilized by Reactive Extrusion with Dicumyl Peroxide. Macromolecular Materials and Engineering. 306(9):1-12. https://doi.org/10.1002/mame.202100196S112306

    Mejoramiento de la absorción de nanopartículas de plata en telas de algodón, utilizando un ligante

    Get PDF
    En este trabajo se sintetizaron nanopartículas de plata mediante el proceso de poliol, que reduce el nitrato de plata con glicol de etileno. Se estudió el efecto de la temperatura y la cantidad de polivinilpirrolidone (PVP). Las temperaturas utilizadas fueron 100, 120 y 140 °C. Se establecieron tres relaciones: de 0.00; 0.25 y 0.50 (% w/w) de PVP/AgNO3. Las nanopartículas con tamaños menores de 30 nm se obtuvieron en condiciones de 120 °C y 0.5 (% w/w) de PVP/AgNO3. Las nanoparticulas obtenidas en concentraciones de 10 y 20 ppm fueron luego depositadas en telas de algodón, mediante la técnica “pad-dry-cure” (tela curada y seca), a fin de analizar sus propiedades contra la bacteria Gram positiva Staphylococcus aureus 25923. Las pruebas mostraron que las telas de algodón con una concentración de 10 y 20 ppm tenían buenas propiedades bactericidas, debido a la reducción de las colonias de bacterias por encima del 98 %. Finalmente, se llevó a cabo un estudio de estabilidad del lavado de las telas impregnadas con las nanopartículas de plata, y, además, se utilizó un ligante acrílico durante el proceso de impregnación. Los resultados se obtuvieron mediante análisis bacteriológicos

    Development and Characterization of Weft-Knitted Fabrics of Naturally Occurring Polymer Fibers for Sustainable and Functional Textiles

    Full text link
    [EN] This study focuses on the potential uses in textiles of fibers of soy protein (SP) and chitin, which are naturally occurring polymers that can be obtained from agricultural and food processing by-products and wastes. The as-received natural fibers were first subjected to a three-step manufacturing process to develop yarns that were, thereafter, converted into fabrics by weft knitting. Different characterizations in terms of physical properties and comfort parameters were carried out on the natural fibers and compared to waste derived fibers of coir and also conventional cotton and cotton-based fibers, which are widely used in the textile industry. The evaluation of the geometry and mechanical properties revealed that both SP and chitin fibers showed similar fineness and tenacity values than cotton, whereas coir did not achieve the expected properties to develop fabrics. In relation to the moisture content, it was found that the SP fibers outperformed the other natural fibers, which could successfully avoid variations in the mechanical performance of their fabrics as well as impair the growth of microorganisms. In addition, the antimicrobial activity of the natural fibers was assessed against different bacteria and fungi that are typically found on the skin. The obtained results indicated that the fibers of chitin and also SP, being the latter functionalized with biocides during the fiber-formation process, showed a high antimicrobial activity. In particular, reductions of up to 100% and 60% were attained for the bacteria and fungi strains, respectively. Finally, textile comfort was evaluated on the weft-knitted fabrics of the chitin and SP fibers by means of thermal and tactile tests. The comfort analysis indicated that the thermal resistance of both fabrics was similar to that of cotton, whereas their air permeability was higher, particularly for chitin due to its higher fineness, which makes these natural fibers very promising for summer clothes. Both the SP and chitin fabrics also presented relatively similar values of fullness and softness than the pure cotton fabric in terms of body feeling and richness. However, the cotton/polyester fabric was the only one that achieved a good range for uses in winter-autumn cloths. Therefore, the results of this work demonstrate that non-conventional chitin and SP fibers can be considered as potential candidates to replace cotton fibers in fabrics for the textile industry due to their high comfort and improved sustainability. Furthermore, these natural fibers can also serve to develop novel functional textiles with antimicrobial properties.This research work was funded by the Spanish Ministry of Science and Innovation (MICI) project number MAT2017-84909-C2-2-R.Ferrándiz, M.; Fages, E.; Rojas-Lema, SP.; Ivorra-Martinez, J.; Gomez-Caturla, J.; Torres-Giner, S. (2021). Development and Characterization of Weft-Knitted Fabrics of Naturally Occurring Polymer Fibers for Sustainable and Functional Textiles. Polymers. 13(4):1-17. https://doi.org/10.3390/polym13040665S11713

    On the Use of Phenolic Compounds Present in Citrus Fruits and Grapes as Natural Antioxidants for Thermo-Compressed Bio-Based High-Density Polyethylene Films

    Full text link
    [EN] This study originally explores the use of naringin (NAR), gallic acid (GA), caffeic acid (CA), and quercetin (QUER) as natural antioxidants for bio-based high-density polyethylene (bio-HDPE). These phenolic compounds are present in various citrus fruits and grapes and can remain in their leaves, peels, pulp, and seeds as by-products or wastes after juice processing. Each natural additive was first melt-mixed at 0.8 parts per hundred resin (phr) of bio-HDPE by extrusion and the resultant pellets were shaped into films by thermo-compression. Although all the phenolic compounds colored the bio-HDPE films, their contact transparency was still preserved. The chemical analyses confirmed the successful inclusion of the phenolic compounds in bio-HDPE, though their interaction with the green polyolefin matrix was low. The mechanical performance of the bio-HDPE films was nearly unaffected by the natural compounds, presenting in all cases a ductile behavior. Interestingly, the phenolic compounds successfully increased the thermo-oxidative stability of bio-HDPE, yielding GA and QUER the highest performance. In particular, using these phenolic compounds, the onset oxidation temperature (OOT) value was improved by 43 and 41.5 ºC, respectively. Similarly, the oxidation induction time (OIT) value, determined in isothermal conditions at 210 ºC, increased from 4.5 min to approximately 109 and 138 min. Furthermore, the onset degradation temperature in air of bio-HDPE, measured for the 5% of mass loss (T5%), was improved by up to 21 ºC after the addition of NAR. Moreover, the GA- and CA-containing bio-HDPE films showed a high antioxidant activity in alcoholic solution due to their favored release capacity, which opens up novel opportunities in active food packaging. The improved antioxidant performance of these phenolic compounds was ascribed to the multiple presence of hydroxyl groups and aromatic heterocyclic rings that provide these molecules with the features to permit the delocalization and the scavenging of free radicals. Therefore, the here-tested phenolic compounds, in particular QUER, can represent a sustainable and cost-effective alternative of synthetic antioxidants in polymer and biopolymer formulations, for which safety and environmental issues have been raised over timeThis research work was funded by the Spanish Ministry of Science and Innovation (MICI) project number MAT2017-84909-C2-2-R.Rojas-Lema, SP.; Torres-Giner, S.; Quiles-Carrillo, L.; Gómez-Caturla, J.; Garcia-Garcia, D.; Balart, R. (2021). On the Use of Phenolic Compounds Present in Citrus Fruits and Grapes as Natural Antioxidants for Thermo-Compressed Bio-Based High-Density Polyethylene Films. Antioxidants. 10(1):1-23. https://doi.org/10.3390/antiox10010014S12310

    Manufacturing and Characterization of Green Composites with Partially Biobased Epoxy Resin and Flaxseed Flour Wastes

    Full text link
    [EN] In the present work, green¿composites from a partially biobased epoxy resin (BioEP) reinforced with lignocellulosic particles, obtained from flax industry by¿products or wastes, have been manufactured by casting. In this study, the flaxseed has been crushed by two different mechanical milling processes to achieve different particle sizes, namely coarse size (CFF), and fine size (FFF) particle flaxseed flour, with a particle size ranging between 100¿220 ¿m and 40¿140 ¿m respectively. Subsequently, different loadings of each particle size (10, 20, 30, and 40 wt%) were mixed with the BioEP resin and poured into a mold and subjected to a curing cycle to obtain solid samples for mechanical, thermal, water absorption, and morphological characterization. The main aim of this research was to study the effect of the particle size and its content on the overall properties of composites with BioEP. The results show that the best mechanical properties were obtained for composites with a low reinforcement content (10 wt%) and with the finest particle size (FFF) due to a better dispersion into the matrix, and a better polymer¿particle interaction too. This also resulted in a lower water absorption capacity due to the presence of fewer voids in the developed composites. Therefore, this study shows the feasibility of using flax wastes from the seeds as a filler in highly environmentally friendly composites with a wood¿like appearance with potential use in furniture or automotive sectors.This research was funded by Spanish Ministry of Science, Innovation, and Universities (MICIU), project numbers MAT2017-84909-C2-2-R. This work was supported by the POLISABIO program grant number (2019-A02). D. Lascano thanks Universitat Politècnica de València (UPV) for the grant received through the PAID-01-18 program. D. Garcia-Garcia wants to thank Generalitat Valenciana (GVA) for their financial support through a post-doctoral grant (APOSTD/2019/201). S. Rojas-Lema is a recipient of a Santiago Grisolía contract (GRISOLIAP/2019/132) from GVA. L. Quiles-Carrillo wants to thank GV for his FPI grant (ACIF/2016/182) and MECD for his FPU grant (FPU15/03812). Microscopy services at UPV are acknowledged for their help in collecting and analyzing FESEM images.Lascano-Aimacaña, DS.; Garcia-Garcia, D.; Rojas-Lema, SP.; Quiles-Carrillo, L.; Balart, R.; Boronat, T. (2020). Manufacturing and Characterization of Green Composites with Partially Biobased Epoxy Resin and Flaxseed Flour Wastes. Applied Sciences. 10(11):1-23. https://doi.org/10.3390/app10113688S1231011Capezza, A. J., Newson, W. R., Olsson, R. T., Hedenqvist, M. S., & Johansson, E. (2019). Advances in the Use of Protein-Based Materials: Toward Sustainable Naturally Sourced Absorbent Materials. ACS Sustainable Chemistry & Engineering, 7(5), 4532-4547. doi:10.1021/acssuschemeng.8b05400Babu, R. P., O’Connor, K., & Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2(1), 8. doi:10.1186/2194-0517-2-8Kim, J.-Y., Lee, H. W., Lee, S. M., Jae, J., & Park, Y.-K. (2019). Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresource Technology, 279, 373-384. doi:10.1016/j.biortech.2019.01.055Boronat, T., Fombuena, V., Garcia-Sanoguera, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials & Design, 68, 177-185. doi:10.1016/j.matdes.2014.12.027Naghmouchi, I., Mutjé, P., & Boufi, S. (2015). Olive stones flour as reinforcement in polypropylene composites: A step forward in the valorization of the solid waste from the olive oil industry. Industrial Crops and Products, 72, 183-191. doi:10.1016/j.indcrop.2014.11.051Zaaba, N. F., & Ismail, H. (2019). Thermoplastic/Natural Filler Composites: A Short Review. Journal of Physical Science, 30(Supp.1), 81-99. doi:10.21315/jps2019.30.s1.5Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037Prabu, V. A., Johnson, R. D. J., Amuthakkannan, P., & Manikandan, V. (2017). Usage of industrial wastes as particulate composite for environment management: Hardness, Tensile and Impact studies. Journal of Environmental Chemical Engineering, 5(1), 1289-1301. doi:10.1016/j.jece.2017.02.007Prabhakar, M. N., Shah, A. U. R., Rao, K. C., & Song, J.-I. (2015). Mechanical and thermal properties of epoxy composites reinforced with waste peanut shell powder as a bio-filler. Fibers and Polymers, 16(5), 1119-1124. doi:10.1007/s12221-015-1119-1Ikladious, N., Shukry, N., El-Kalyoubi, S., Asaad, J., Mansour, S., Tawfik, S., & Abou-Zeid, R. (2017). Eco-friendly composites based on peanut shell powder / unsaturated polyester resin. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5), 955-964. doi:10.1177/1464420717722377Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017VK, S., & G, B. (2016). Experimental Determination of Mechanical and Physical Properties of Almond Shell Particles Filled Biocomposite in Modified Epoxy Resin. Journal of Material Science & Engineering, 05(03). doi:10.4172/2169-0022.1000246Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B: Engineering, 144, 153-162. doi:10.1016/j.compositesb.2018.02.031Barczewski, M., Sałasińska, K., & Szulc, J. (2019). Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polymer Testing, 75, 1-11. doi:10.1016/j.polymertesting.2019.01.017Balart, J. F., Montanes, N., Fombuena, V., Boronat, T., & Sánchez-Nacher, L. (2017). Disintegration in Compost Conditions and Water Uptake of Green Composites from Poly(Lactic Acid) and Hazelnut Shell Flour. Journal of Polymers and the Environment, 26(2), 701-715. doi:10.1007/s10924-017-0988-3Sharma, H., Singh, I., & Misra, J. P. (2019). Mechanical and thermal behaviour of food waste (Citrus limetta peel) fillers–based novel epoxy composites. Polymers and Polymer Composites, 27(9), 527-535. doi:10.1177/0967391119851012Garcia-Garcia, D., Quiles-Carrillo, L., Montanes, N., Fombuena, V., & Balart, R. (2017). Manufacturing and Characterization of Composite Fibreboards with Posidonia oceanica Wastes with an Environmentally-Friendly Binder from Epoxy Resin. Materials, 11(1), 35. doi:10.3390/ma11010035Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042Koutsomitopoulou, A. F., Bénézet, J. C., Bergeret, A., & Papanicolaou, G. C. (2014). Preparation and characterization of olive pit powder as a filler to PLA-matrix bio-composites. Powder Technology, 255, 10-16. doi:10.1016/j.powtec.2013.10.047Naghmouchi, I., Espinach, F. X., Mutjé, P., & Boufi, S. (2015). Polypropylene composites based on lignocellulosic fillers: How the filler morphology affects the composite properties. Materials & Design (1980-2015), 65, 454-461. doi:10.1016/j.matdes.2014.09.047D’Amato, D., Veijonaho, S., & Toppinen, A. (2020). Towards sustainability? Forest-based circular bioeconomy business models in Finnish SMEs. Forest Policy and Economics, 110, 101848. doi:10.1016/j.forpol.2018.12.004Capezza, A. J., Lundman, M., Olsson, R. T., Newson, W. R., Hedenqvist, M. S., & Johansson, E. (2020). Carboxylated Wheat Gluten Proteins: A Green Solution for Production of Sustainable Superabsorbent Materials. Biomacromolecules, 21(5), 1709-1719. doi:10.1021/acs.biomac.9b01646Barczewski, M., Mysiukiewicz, O., & Kloziński, A. (2018). Complex modification effect of linseed cake as an agricultural waste filler used in high density polyethylene composites. Iranian Polymer Journal, 27(9), 677-688. doi:10.1007/s13726-018-0644-3Food and Agriculture Organizationhttp://www.fao.orgZhang, Z.-S., Wang, L.-J., Li, D., Jiao, S.-S., Chen, X. D., & Mao, Z.-H. (2008). Ultrasound-assisted extraction of oil from flaxseed. Separation and Purification Technology, 62(1), 192-198. doi:10.1016/j.seppur.2008.01.014Bekhit, A. E.-D. A., Shavandi, A., Jodjaja, T., Birch, J., Teh, S., Mohamed Ahmed, I. A., … Bekhit, A. A. (2018). Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatalysis and Agricultural Biotechnology, 13, 129-152. doi:10.1016/j.bcab.2017.11.017Zhang, Z.-S., Wang, L.-J., Li, D., Li, S.-J., & Özkan, N. (2011). Characteristics of Flaxseed Oil from Two Different Flax Plants. International Journal of Food Properties, 14(6), 1286-1296. doi:10.1080/10942911003650296Mannucci, A., Castagna, A., Santin, M., Serra, A., Mele, M., & Ranieri, A. (2019). Quality of flaxseed oil cake under different storage conditions. LWT, 104, 84-90. doi:10.1016/j.lwt.2019.01.035Wirkijowska, A., Zarzycki, P., Sobota, A., Nawrocka, A., Blicharz-Kania, A., & Andrejko, D. (2020). The possibility of using by-products from the flaxseed industry for functional bread production. LWT, 118, 108860. doi:10.1016/j.lwt.2019.108860Chan, C. M., Vandi, L.-J., Pratt, S., Halley, P., Richardson, D., Werker, A., & Laycock, B. (2017). Composites of Wood and Biodegradable Thermoplastics: A Review. Polymer Reviews, 58(3), 444-494. doi:10.1080/15583724.2017.1380039España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421Bertomeu, D., García-Sanoguera, D., Fenollar, O., Boronat, T., & Balart, R. (2012). Use of eco-friendly epoxy resins from renewable resources as potential substitutes of petrochemical epoxy resins for ambient cured composites with flax reinforcements. Polymer Composites, 33(5), 683-692. doi:10.1002/pc.22192Samper, M. D., Fombuena, V., Boronat, T., García-Sanoguera, D., & Balart, R. (2012). Thermal and Mechanical Characterization of Epoxy Resins (ELO and ESO) Cured with Anhydrides. Journal of the American Oil Chemists’ Society. doi:10.1007/s11746-012-2041-yFombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043Anusic, A., Resch‐Fauster, K., Mahendran, A. R., & Wuzella, G. (2019). Anhydride Cured Bio‐Based Epoxy Resin: Effect of Moisture on Thermal and Mechanical Properties. Macromolecular Materials and Engineering, 304(7), 1900031. doi:10.1002/mame.201900031Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031Fenollar, O., Sanchez-Nacher, L., Garcia-Sanoguera, D., López, J., & Balart, R. (2009). The effect of the curing time and temperature on final properties of flexible PVC with an epoxidized fatty acid ester as natural-based plasticizer. Journal of Materials Science, 44(14), 3702-3711. doi:10.1007/s10853-009-3495-7Liu, X. Q., Huang, W., Jiang, Y. H., Zhu, J., & Zhang, C. Z. (2012). Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts. Express Polymer Letters, 6(4), 293-298. doi:10.3144/expresspolymlett.2012.32Niedermann, P., Szebényi, G., & Toldy, A. (2015). Characterization of high glass transition temperature sugar-based epoxy resin composites with jute and carbon fibre reinforcement. Composites Science and Technology, 117, 62-68. doi:10.1016/j.compscitech.2015.06.001Niedermann, P., Szebényi, G., & Toldy, A. (2014). Effect of Epoxidized Soybean Oil on Curing, Rheological, Mechanical and Thermal Properties of Aromatic and Aliphatic Epoxy Resins. Journal of Polymers and the Environment, 22(4), 525-536. doi:10.1007/s10924-014-0673-8Wu, Y., Wang, Y., Yang, F., Wang, J., & Wang, X. (2020). Study on the Properties of Transparent Bamboo Prepared by Epoxy Resin Impregnation. Polymers, 12(4), 863. doi:10.3390/polym12040863Salasinska, K., Mizera, K., Barczewski, M., Borucka, M., Gloc, M., Celiński, M., & Gajek, A. (2019). The influence of degree of fragmentation of Pinus sibirica on flammability, thermal and thermomechanical behavior of the epoxy-composites. Polymer Testing, 79, 106036. doi:10.1016/j.polymertesting.2019.106036Kumar, R., Kumar, K., & Bhowmik, S. (2018). Mechanical characterization and quantification of tensile, fracture and viscoelastic characteristics of wood filler reinforced epoxy composite. Wood Science and Technology, 52(3), 677-699. doi:10.1007/s00226-018-0995-0Stabik, J., & Chomiak, M. (2016). Graded epoxy-hard coal composites: Analysis of filler particle distribution in the epoxy matrix. Journal of Composite Materials, 50(26), 3663-3677. doi:10.1177/0021998315623626Lascano, D., Quiles-Carrillo, L., Torres-Giner, S., Boronat, T., & Montanes, N. (2019). Optimization of the Curing and Post-Curing Conditions for the Manufacturing of Partially Bio-Based Epoxy Resins with Improved Toughness. Polymers, 11(8), 1354. doi:10.3390/polym11081354Agüero, Á., Lascano, D., Garcia-Sanoguera, D., Fenollar, O., & Torres-Giner, S. (2020). Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance. Sustainability, 12(2), 652. doi:10.3390/su12020652Bledzki, A. K., Mamun, A. A., & Volk, J. (2010). Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties. Composites Science and Technology, 70(5), 840-846. doi:10.1016/j.compscitech.2010.01.022Salasinska, K., Barczewski, M., Górny, R., & Kloziński, A. (2017). Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polymer Bulletin, 75(6), 2511-2528. doi:10.1007/s00289-017-2163-3Kwon, H.-J., Sunthornvarabhas, J., Park, J.-W., Lee, J.-H., Kim, H.-J., Piyachomkwan, K., … Cho, D. (2014). Tensile properties of kenaf fiber and corn husk flour reinforced poly(lactic acid) hybrid bio-composites: Role of aspect ratio of natural fibers. Composites Part B: Engineering, 56, 232-237. doi:10.1016/j.compositesb.2013.08.003https://www.novowood.it/en/download-technical-sheet-wpc_39c7.htmlhttps://www.jeluplast.com/wp-content/uploads/2013/09/WPC-PE-H70-800-03.pdfGarcía-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., & Balart, R. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 78, 256-265. doi:10.1016/j.compositesb.2015.03.080Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment, 18(3), 422-429. doi:10.1007/s10924-010-0185-0Raju, G. U., & Kumarappa, S. (2012). Experimental Study on Mechanical and Thermal Properties of Epoxy Composites Filled with Agricultural Residue. Polymers from Renewable Resources, 3(3), 117-138. doi:10.1177/204124791200300303Chen, W.-H., & Kuo, P.-C. (2010). A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy, 35(6), 2580-2586. doi:10.1016/j.energy.2010.02.054Moriana, R., Vilaplana, F., & Ek, M. (2015). Forest residues as renewable resources for bio-based polymeric materials and bioenergy: chemical composition, structure and thermal properties. Cellulose, 22(5), 3409-3423. doi:10.1007/s10570-015-0738-4Sengupta, S., Maity, P., Ray, D., & Mukhopadhyay, A. (2013). Stearic acid as coupling agent in fly ash reinforced recycled polypropylene matrix composites: Structural, mechanical, and thermal characterizations. Journal of Applied Polymer Science, 130(3), 1996-2004. doi:10.1002/app.39413Mysiukiewicz, O., & Barczewski, M. (2018). Utilization of linseed cake as a postagricultural functional filler for poly(lactic acid) green composites. Journal of Applied Polymer Science, 136(10), 47152. doi:10.1002/app.47152Balart, J. F., García-Sanoguera, D., Balart, R., Boronat, T., & Sánchez-Nacher, L. (2016). Manufacturing and properties of biobased thermoplastic composites from poly(lactid acid) and hazelnut shell wastes. Polymer Composites, 39(3), 848-857. doi:10.1002/pc.24007Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063Liminana, P., Quiles-Carrillo, L., Boronat, T., Balart, R., & Montanes, N. (2018). The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO). Materials, 11(11), 2179. doi:10.3390/ma11112179Reixach, R., Puig, J., Méndez, J. A., Gironès, J., Espinach, F. X., Arbat, G., & Mutjé, P. (2015). Orange Wood Fiber Reinforced Polypropylene Composites: Thermal Properties. BioResources, 10(2). doi:10.15376/biores.10.2.2156-2166Akil, H. M., Cheng, L. W., Mohd Ishak, Z. A., Abu Bakar, A., & Abd Rahman, M. A. (2009). Water absorption study on pultruded jute fibre reinforced unsaturated polyester composites. Composites Science and Technology, 69(11-12), 1942-1948. doi:10.1016/j.compscitech.2009.04.014Ferrero, B., Boronat, T., Moriana, R., Fenollar, O., & Balart, R. (2013). Green composites based on wheat gluten matrix and posidonia oceanica waste fibers as reinforcements. Polymer Composites, 34(10), 1663-1669. doi:10.1002/pc.22567Alander, B., Capezza, A. J., Wu, Q., Johansson, E., Olsson, R. T., & Hedenqvist, M. S. (2018). A facile way of making inexpensive rigid and soft protein biofoams with rapid liquid absorption. Industrial Crops and Products, 119, 41-48. doi:10.1016/j.indcrop.2018.03.069Ben Daly, H., Ben Brahim, H., Hfaied, N., Harchay, M., & Boukhili, R. (2007). Investigation of water absorption in pultruded composites containing fillers and low profile additives. Polymer Composites, 28(3), 355-364. doi:10.1002/pc.20243UDHAYASANKAR, R., & KATHIKEYAN, B. (2019). PREPARATION AND PROPERTIES OF CASHEW NUT SHELL LIQUID-BASED COMPOSITE REINFORCED BY COCONUT SHELL PARTICLES. Surface Review and Letters, 26(04), 1850174. doi:10.1142/s0218625x18501743Naghmouchi, I., Mutjé, P., & Boufi, S. (2014). Polyvinyl chloride composites filled with olive stone flour: Mechanical, thermal, and water absorption properties. Journal of Applied Polymer Science, 131(22), n/a-n/a. doi:10.1002/app.41083Thirmizir, M. Z. A., Ishak, Z. A. M., Taib, R. M., Sudin, R., & Leong, Y. W. (2011). Mechanical, Water Absorption and Dimensional Stability Studies of Kenaf Bast Fibre-Filled Poly(butylene succinate) Composites. Polymer-Plastics Technology and Engineering, 50(4), 339-348. doi:10.1080/03602559.2010.531871Ishak, Z. A. M., Yow, B. N., Ng, B. L., Khalil, H. P. S. A., & Rozman, H. D. (2001). Hygrothermal aging and tensile behavior of injection-molded rice husk-filled polypropylene composites. Journal of Applied Polymer Science, 81(3), 742-753. doi:10.1002/app.1491Sapuan, S. M., & Maleque, M. A. (2005). Design and fabrication of natural woven fabric reinforced epoxy composite for household telephone stand. Materials & Design, 26(1), 65-71. doi:10.1016/j.matdes.2004.03.01

    Evaluation of Different Compatibilization Strategies to Improve the Performance of Injection-Molded Green Composite Pieces Made of Polylactide Reinforced with Short Flaxseed Fibers

    Full text link
    [EN] Green composites made of polylactide (PLA) and short flaxseed fibers (FFs) at 20 wt % were successfully compounded by twin-screw extrusion (TSE) and subsequently shaped into pieces by injection molding. The linen waste derived FFs were subjected to an alkalization pretreatment to remove impurities, improve the fiber surface quality, and make the fibers more hydrophobic. The alkali-pretreated FFs successfully reinforced PLA, leading to green composite pieces with higher mechanical strength. However, the pieces also showed lower ductility and toughness and the lignocellulosic fibers easily detached during fracture due to the absence or low interfacial adhesion with the biopolyester matrix. Therefore, four different compatibilization strategies were carried out to enhance the fiber-matrix interfacial adhesion. These routes consisted on the silanization of the alkalized FFs with a glycidyl silane, namely (3-glycidyloxypropyl) trimethoxysilane (GPTMS), and the reactive extrusion (REX) with three compatibilizers, namely a multi-functional epoxy-based styrene-acrylic oligomer (ESAO), a random copolymer of poly(styrene-co-glycidyl methacrylate) (PS-co-GMA), and maleinized linseed oil (MLO). The results showed that all the here-tested compatibilizers improved mechanical strength, ductility, and toughness as well as the thermal stability and thermomechanical properties of the green composite pieces. The highest interfacial adhesion was observed in the green composite pieces containing the silanized fibers. Interestingly, PS-co-GMA and, more intensely, ESAO yielded the pieces with the highest mechanical performance due to the higher reactivity of these additives with both composite components and their chain-extension action, whereas MLO led to the most ductile pieces due to its secondary role as plasticizer for PLA.This research work was funded by the Spanish Ministry of Science and Innovation (MICI) project numbers RTI2018-097249-B-C21 and MAT2017-84909-C2-2-R. D.L. and J.I.-M. thanks UPV for the grant received through the PAID-01-18 and PAID-01-19 (SP2019001) programs, respectively. S.T.-G. is recipient of a Juan de la Cierva contract (IJCI-2016-29675) from MICIU while S.R.J. is funded through the Santiago Gisolía contract (GRISOLIAP/2019/132) from Generalitat Valenciana (GVA). The microscopy services of UPV are also acknowledged for their help in collecting and analyzing the FESEM images.Agüero, Á.; Garcia-Sanoguera, D.; Lascano-Aimacaña, DS.; Rojas-Lema, SP.; Ivorra-Martínez, J.; Fenollar, O.; Torres Giner, S. (2020). Evaluation of Different Compatibilization Strategies to Improve the Performance of Injection-Molded Green Composite Pieces Made of Polylactide Reinforced with Short Flaxseed Fibers. Polymers. 12(4):1-22. https://doi.org/10.3390/polym12040821S12212

    Selección de materiales para envases y embalajes empleando CES EDUPACK como Base de Datos

    Full text link
    La selección del material más adecuado con el que elaborar o fabricar un producto determinado es una tarea siempre complicada, pues una correcta elección va a tener una considerable repercusión en las diferentes etapas de desarrollo y vida del producto, en el coste del mismo y en su interacción con el medio ambiente, entre otras cosas. Hay productos en los que cambiar el material con el que habitualmente se están fabricando es complicado, pues la experiencia ha demostrado que ese material es el óptimo para ese producto en concreto. En cambio, para productos de otros sectores, como el del envase y embalaje, la selección muchas veces va ligada a conseguir desarrollar el producto al menor coste posible, lo que en muchas ocasiones se está traduciendo en emplear el plástico para la elaboración de estos productos. Pero el acto impacto medioambiental que están provocando estos envases de plástico tras su utilización está empujando la búsqueda de nuevos materiales,más sostenibles, con los que poder fabricar dichos envases,manteniendo las mismas prestaciones. En el presente trabajo se pretende presentar el software CES EduPack como una interesante base de datos de materiales cuya consulta nos puede ayudar en dicha búsqueda y selección.Montañés Muñoz, N.; Quiles Carrillo, LJ.; Lascano Aimacaña, DS.; Ivorra Martínez, J.; Rojas Lema, SP.; García García, D. (2020). Selección de materiales para envases y embalajes empleando CES EDUPACK como Base de Datos. http://hdl.handle.net/10251/144593DE

    El método gráfico de selección de materiales con CES EDUPACK

    Full text link
    En las últimas décadas hemos sido testigos de un gran avance tecnológico en multitud de sectores, entre otros el referente al área de los materiales. Y es que no solo se han mejorado muchos de los materiales tradicionales, como los aceros, desarrollándose por ejemplo las micro-aleaciones de acero diseñadas para cumplir con unas propiedades mecánicas específicas, sino que han surgido toda una serie de nuevos materiales más ligeros y resistentes, o con propiedades técnicas mejoradas, como los materiales compuestos, entre otros muchos. Todo ello ha provocado que el proceso de selección de materiales para una aplicación determinada sea cada vez más complejo, pues el abanico de posibilidades, propiedades, características, etc., ha crecido de manera exponencial. EL software CES EduPack tiene implementada una herramienta gráfica que nos puede ayudar en este difícil proceso de selección, siendo que en el presente trabajo se pretende enseñar dicho método gráfico que el programa CES EduPack pone a nuestra disposición.Montañés Muñoz, N.; Quiles Carrillo, LJ.; Lascano Aimacaña, DS.; Ivorra Martínez, J.; Rojas Lema, SP.; García García, D. (2020). El método gráfico de selección de materiales con CES EDUPACK. http://hdl.handle.net/10251/146977DE
    corecore