18,100 research outputs found
Sparse Iterative Learning Control with Application to a Wafer Stage: Achieving Performance, Resource Efficiency, and Task Flexibility
Trial-varying disturbances are a key concern in Iterative Learning Control
(ILC) and may lead to inefficient and expensive implementations and severe
performance deterioration. The aim of this paper is to develop a general
framework for optimization-based ILC that allows for enforcing additional
structure, including sparsity. The proposed method enforces sparsity in a
generalized setting through convex relaxations using norms. The
proposed ILC framework is applied to the optimization of sampling sequences for
resource efficient implementation, trial-varying disturbance attenuation, and
basis function selection. The framework has a large potential in control
applications such as mechatronics, as is confirmed through an application on a
wafer stage.Comment: 12 pages, 14 figure
- β¦