389 research outputs found

    Assembling Screws: Large Preference for the Homochiral Combination in the Proton-Bound Dimers of 1-Aza[6]helicene in the Gas Phase

    Get PDF
    By means of selective deuterium labeling combined with separation of enantiomers, chiral discrimination in the proton-bound dimers of 1-aza[6]helicene is probed by electrospray mass spectrometry. The analysis of the results reveals a pronounced preference for the formation of homochiral dimers (P,P and M,M) over the heterochiral variant (P,M)

    Proton Affinities of Organocatalysts Derived from Pyridine N-oxide

    Get PDF
    Proton affinities of several efficient organocatalysts METHOX, QUINOX, ANETOX, KOTOX, FUREOX, and FUROOX bearing a pyridine N-oxide or 2,2′-bipyridyl N,N′-dioxide moiety were de-termined by using extended kinetic method and density functional theory calculations. Proton affinities are in the range of 1030–1060 kJ mol–1. Using isodesmic reactions, the effect of combining two pyridine N-oxide units in the neutral and the protonated molecule was studied: The combination of an unfavorable interaction in the former case and a favorable interaction in the latter accounts for the superbasic proper¬ties of 2,2′-bipyridyl N,N′-dioxides. Last but not least, the theoretically predicted pKa in ethanol are 0.1, –2.7, 0.9, 1.8, 1.9, and 2.3 for the METHOX, QUINOX, ANETOX, FUROOX, FUREOX, and KOTOX, respectively

    Mechanistic studies of the palladium-catalyzed S,O-ligand promoted C-H olefination of aromatic compounds

    Get PDF
    Pd-catalyzed C-H functionalization reactions of non-directed substrates have recently emerged as an attractive alternative to the use of directing groups. Key to the success of these transformations has been the discovery of new ligands capable of increasing both the reactivity of the inert C-H bond and the selectivity of the process. Among them, a new type of S,O-ligand has been shown to be highly efficient in promoting a variety of Pd-catalyzed C-H olefination reactions of non-directed arenes. Despite the success of this type of S,O-ligand, its role in the C-H functionalization processes is unknown. Herein, we describe a detailed mechanistic study focused on elucidating the role of the S,O-ligand in the Pd-catalyzed C-H olefination of non-directed arenes. For this purpose, several mechanistic tools, including isolation and characterization of reactive intermediates, NMR and kinetic studies, isotope effects and DFT calculations have been employed. The data from these experiments suggest that the C-H activation is the rate-determining step in both cases with and without the S,O-ligand. Furthermore, the results indicate that the S,O-ligand triggers the formation of more reactive Pd cationic species, which explains the observed acceleration of the reaction. Together, these studies shed light on the role of the S,O-ligand in promoting Pd-catalyzed C-H functionalization reactions.</p

    Mechanism of Gas Phase Ethene-Ozone Reaction and Concomitant Processes. Theoretical Study

    Get PDF
    A theoretical analysis of the gas phase ethene-ozone reaction is presented. A complete survey of low energy channels reveals several new intermediates, and provides a rationale for the efficient formation of OH radicals in the gas phase ozonolysis of ethene

    Photochemistry of a 9-Dithianyl-Pyronin Derivative: A Cornucopia of Reaction Intermediates Lead to Common Photoproducts

    Get PDF
    Leaving groups attached to themeso-methyl position of many common dyes, such as xanthene, BODIPY, or pyronin derivatives, can be liberated upon irradiation with visible light. However, the course of phototransformations of such photoactivatable systems can be quite complex and the identification of reaction intermediates or even products is often neglected. This paper exemplifies the photochemistry of a 9-dithianyl-pyronin derivative, which undergoes an oxidative transformation at themeso-position to give a 3,6-diamino-9H-xanthen-9-one derivative, formic acid, and carbon monoxide as the main photoproducts. The course of this multi-photon multi-step reaction was studied under various conditions by steady-state and time-resolved optical spectroscopy, mass spectrometry and NMR spectroscopy to understand the effects of solvents and molecular oxygen on individual steps. Our analyses have revealed the existence of many intermediates and their interrelationships to provide a complete picture of the transformation, which can bring new inputs to a rational design of new photoactivatable pyronin or xanthene derivatives

    Gas-phase Fragmentation of Deprotonated p-Hydroxyphenacyl Derivatives

    Get PDF
    Electrospray ionization of methanolic solutions of p-hydroxyphenacyl derivatives HO-C6H4-C(O)-CH2-X (X = leaving group) provides abundant signals for the deprotonated species which are assigned to the corresponding phenolate anions −O-C6H4-C(O)-CH2-X. Upon collisional activation in the gas phase, these anions inter alia undergo loss of a neutral “C8H6O2” species concomitant with formation of the corresponding anions X−. The energies required for the loss of neutral roughly correlate with the gas phase acidities of the conjugate acids (HX). Extensive theoretical studies performed for X = CF3COO in order to reveal the energetically most favorable pathway for the formation of neutral “C8H6O2” suggest three different routes of similar energy demands, involving a spirocyclopropanone, epoxide formation, and a diradical, respectively

    Autocatalysis in Eschenmoser Coupling Reactions.

    Get PDF
    peer reviewedThe Eschenmoser coupling reaction (ECR) of thioamides with electrophiles is believed to proceed via thiirane intermediates. However, little is known about converting the intermediates into ECR products. Previous mechanistic studies involved external thiophiles to remove the sulfur atom from the intermediates. In this work, an ECR proceeding without any thiophilic agent or base is studied by electrospray ionization-mass spectrometry. ESI-MS enables the detection of the so-far elusive polysulfide species Sn , with n ranging from 2 to 16 sulfur atoms, proposed to be the key species leading to product formation. Integrating observations from ion mobility spectrometry, ion spectroscopy, and reaction monitoring via flow chemistry coupled with mass spectrometry provides a comprehensive understanding of the reaction mechanism and uncovers the autocatalytic nature of the ECR reaction

    Kinetics of ligand exchange in solution: a quantitative mass spectrometry approach.

    Get PDF
    peer reviewedComplex speciation and exchange kinetics of labile ligands are critical parameters for understanding the reactivity of metal complexes in solution. We present a novel approach to determine ligand exchange parameters based on electrospray ionization mass spectrometry (ESI-MS). The introduction of isotopically labelled ligands to a solution of metal host and unlabelled ligands allows the quantitative investigation of the solution-phase equilibria. Furthermore, ion mobility separation can target individual isomers, such as ligands bound at specific sites. As a proof of concept, we investigate the solution equilibria of labile pyridine ligands coordinated in the cavity of macrocyclic porphyrin cage complexes bearing diamagnetic or paramagnetic metal centres. The effects of solvent, porphyrin coordination sphere, transition metal, and counterion on ligand dissociation are discussed. Rate constants and activation parameters for ligand dissociation in the solution can be derived from our ESI-MS approach, thereby providing mechanistic insights that are not easily obtained from traditional solution-phase techniques
    corecore