3 research outputs found

    SMC-based immunity against extrachromosomal DNA elements.

    Get PDF
    SMC and SMC-like complexes promote chromosome folding and genome maintenance in all domains of life. Recently, they were also recognized as factors in cellular immunity against foreign DNA. In bacteria and archaea, Wadjet and Lamassu are anti-plasmid/phage defence systems, while Smc5/6 and Rad50 complexes play a role in anti-viral immunity in humans. This raises an intriguing paradox - how can the same, or closely related, complexes on one hand secure the integrity and maintenance of chromosomal DNA, while on the other recognize and restrict extrachromosomal DNA? In this minireview, we will briefly describe the latest understanding of each of these complexes in immunity including speculations on how principles of SMC(-like) function may explain how the systems recognize linear or circular forms of invading DNA

    DNA-measuring Wadjet SMC ATPases restrict smaller circular plasmids by DNA cleavage.

    No full text
    Structural maintenance of chromosome (SMC) complexes fold DNA by loop extrusion to support chromosome segregation and genome maintenance. Wadjet systems (JetABCD/MksBEFG/EptABCD) are derivative SMC complexes with roles in bacterial immunity against selfish DNA. Here, we show that JetABCD restricts circular plasmids with an upper size limit of about 100 kb, whereas a linear plasmid evades restriction. Purified JetABCD complexes cleave circular DNA molecules, regardless of the DNA helical topology; cleavage is DNA sequence nonspecific and depends on the SMC ATPase. A cryo-EM structure reveals a distinct JetABC dimer-of-dimers geometry, with the two SMC dimers facing in opposite direction-rather than the same as observed with MukBEF. We hypothesize that JetABCD is a DNA-shape-specific endonuclease and propose the "total extrusion model" for DNA cleavage exclusively when extrusion of an entire plasmid has been completed by a JetABCD complex. Total extrusion cannot be achieved on the larger chromosome, explaining how self-DNA may evade processing
    corecore