4,123 research outputs found

    A Dataset for Movie Description

    Full text link
    Descriptive video service (DVS) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their peers. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed DVS, which is temporally aligned to full length HD movies. In addition we also collected the aligned movie scripts which have been used in prior work and compare the two different sources of descriptions. In total the Movie Description dataset contains a parallel corpus of over 54,000 sentences and video snippets from 72 HD movies. We characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing DVS to scripts, we find that DVS is far more visual and describes precisely what is shown rather than what should happen according to the scripts created prior to movie production

    Educational Assessment in Emerging Areas of Design: Toward the Development of a Systematic Framework Based on a Study of Rubrics

    Get PDF
    This paper presents a formative study that investigates the perceived effectiveness of rubrics as assessment tools by communication and industrial design educators and first year design students in the context of a design studio. The project is motivated by the increasing challenge of assessing subjective and intangible attributes that are associated with the teaching of emerging areas in design, and society’s growing need for measurable results. The goal of this project is to shed light on the perceived successes and failures of a specific assessment tool, known as a rubric, and use this information to improve students’ and educators’ understanding, value, and use of assessment tools. Based on the characteristics of the emerging design landscape, this paper argues the importance of assessments and the need for their improvement. It explains the construction of three assessment forms that are based on successful models used in other disciplines. This paper describes how the forms were used throughout the semester to provide an overview of course objectives and assess individual projects. It explains the contents of a questionnaire and describes how it was used at the end of the semester to evaluate students’ perceptions of the assessments forms. Feedback gained from the instructors indicated that rubrics were not more efficient than other forms of assessment but did aid the assessment of intangibles and did not reduce students’ creativity. The results of the questionnaire showed that students perceived the attributes of rubrics more positively than other forms of assessment but still favoured handwritten comments. These findings informed the proposal of a set of considerations that should be taken into account when creating assessment forms for use in classrooms that focus on emerging areas of design. They describe the importance of personal comments, clear terminology, a planned introduction of the tool, and an open-mind. Keywords: Rubrics; Assessment; Evaluation; Pedagogy; Education; Learning; Feedback.</p

    Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding

    Full text link
    Modeling textual or visual information with vector representations trained from large language or visual datasets has been successfully explored in recent years. However, tasks such as visual question answering require combining these vector representations with each other. Approaches to multimodal pooling include element-wise product or sum, as well as concatenation of the visual and textual representations. We hypothesize that these methods are not as expressive as an outer product of the visual and textual vectors. As the outer product is typically infeasible due to its high dimensionality, we instead propose utilizing Multimodal Compact Bilinear pooling (MCB) to efficiently and expressively combine multimodal features. We extensively evaluate MCB on the visual question answering and grounding tasks. We consistently show the benefit of MCB over ablations without MCB. For visual question answering, we present an architecture which uses MCB twice, once for predicting attention over spatial features and again to combine the attended representation with the question representation. This model outperforms the state-of-the-art on the Visual7W dataset and the VQA challenge.Comment: Accepted to EMNLP 201

    The Long-Short Story of Movie Description

    Full text link
    Generating descriptions for videos has many applications including assisting blind people and human-robot interaction. The recent advances in image captioning as well as the release of large-scale movie description datasets such as MPII Movie Description allow to study this task in more depth. Many of the proposed methods for image captioning rely on pre-trained object classifier CNNs and Long-Short Term Memory recurrent networks (LSTMs) for generating descriptions. While image description focuses on objects, we argue that it is important to distinguish verbs, objects, and places in the challenging setting of movie description. In this work we show how to learn robust visual classifiers from the weak annotations of the sentence descriptions. Based on these visual classifiers we learn how to generate a description using an LSTM. We explore different design choices to build and train the LSTM and achieve the best performance to date on the challenging MPII-MD dataset. We compare and analyze our approach and prior work along various dimensions to better understand the key challenges of the movie description task

    Movie Description

    Get PDF
    Audio Description (AD) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their peers. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed ADs, which are temporally aligned to full length movies. In addition we also collected and aligned movie scripts used in prior work and compare the two sources of descriptions. In total the Large Scale Movie Description Challenge (LSMDC) contains a parallel corpus of 118,114 sentences and video clips from 202 movies. First we characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing ADs to scripts, we find that ADs are indeed more visual and describe precisely what is shown rather than what should happen according to the scripts created prior to movie production. Furthermore, we present and compare the results of several teams who participated in a challenge organized in the context of the workshop "Describing and Understanding Video & The Large Scale Movie Description Challenge (LSMDC)", at ICCV 2015

    Attentive Explanations: Justifying Decisions and Pointing to the Evidence (Extended Abstract)

    Full text link
    Deep models are the defacto standard in visual decision problems due to their impressive performance on a wide array of visual tasks. On the other hand, their opaqueness has led to a surge of interest in explainable systems. In this work, we emphasize the importance of model explanation in various forms such as visual pointing and textual justification. The lack of data with justification annotations is one of the bottlenecks of generating multimodal explanations. Thus, we propose two large-scale datasets with annotations that visually and textually justify a classification decision for various activities, i.e. ACT-X, and for question answering, i.e. VQA-X. We also introduce a multimodal methodology for generating visual and textual explanations simultaneously. We quantitatively show that training with the textual explanations not only yields better textual justification models, but also models that better localize the evidence that support their decision.Comment: arXiv admin note: text overlap with arXiv:1612.0475

    Multimodal Explanations: Justifying Decisions and Pointing to the Evidence

    Full text link
    Deep models that are both effective and explainable are desirable in many settings; prior explainable models have been unimodal, offering either image-based visualization of attention weights or text-based generation of post-hoc justifications. We propose a multimodal approach to explanation, and argue that the two modalities provide complementary explanatory strengths. We collect two new datasets to define and evaluate this task, and propose a novel model which can provide joint textual rationale generation and attention visualization. Our datasets define visual and textual justifications of a classification decision for activity recognition tasks (ACT-X) and for visual question answering tasks (VQA-X). We quantitatively show that training with the textual explanations not only yields better textual justification models, but also better localizes the evidence that supports the decision. We also qualitatively show cases where visual explanation is more insightful than textual explanation, and vice versa, supporting our thesis that multimodal explanation models offer significant benefits over unimodal approaches.Comment: arXiv admin note: text overlap with arXiv:1612.0475

    Gradient-free Policy Architecture Search and Adaptation

    Full text link
    We develop a method for policy architecture search and adaptation via gradient-free optimization which can learn to perform autonomous driving tasks. By learning from both demonstration and environmental reward we develop a model that can learn with relatively few early catastrophic failures. We first learn an architecture of appropriate complexity to perceive aspects of world state relevant to the expert demonstration, and then mitigate the effect of domain-shift during deployment by adapting a policy demonstrated in a source domain to rewards obtained in a target environment. We show that our approach allows safer learning than baseline methods, offering a reduced cumulative crash metric over the agent's lifetime as it learns to drive in a realistic simulated environment.Comment: Accepted in Conference on Robot Learning, 201
    • …
    corecore