131 research outputs found
Complete genome sequence of Syntrophobacter fumaroxidans strain (MPOB(T)).
Syntrophobacter fumaroxidans strain MPOB(T) is the best-studied species of the genus Syntrophobacter. The species is of interest because of its anaerobic syntrophic lifestyle, its involvement in the conversion of propionate to acetate, H2 and CO2 during the overall degradation of organic matter, and its release of products that serve as substrates for other microorganisms. The strain is able to ferment fumarate in pure culture to CO2 and succinate, and is also able to grow as a sulfate reducer with propionate as an electron donor. This is the first complete genome sequence of a member of the genus Syntrophobacter and a member genus in the family Syntrophobacteraceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,990,251 bp long genome with its 4,098 protein-coding and 81 RNA genes is a part of the Microbial Genome Program (MGP) and the Genomes to Life (GTL) Program project
The Standard Model with gravity couplings
In this paper, we examine the coupling of matter fields to gravity within the
framework of the Standard Model of particle physics. The coupling is described
in terms of Weyl fermions of a definite chirality, and employs only
(anti)self-dual or left-handed spin connection fields. It is known from the
work of Ashtekar and others that such fields can furnish a complete description
of gravity without matter. We show that conditions ensuring the cancellation of
perturbative chiral gauge anomalies are not disturbed. We also explore a global
anomaly associated with the theory, and argue that its removal requires that
the number of fundamental fermions in the theory must be multiples of 16. In
addition, we investigate the behavior of the theory under discrete
transformations P, C and T; and discuss possible violations of these discrete
symmetries, including CPT, in the presence of instantons and the
Adler-Bell-Jackiw anomaly.Comment: Extended, and replaced with LaTex file. 25 Page
Problem-based learning in dental education: what's the evidence for and against... and is it worth the effort?
The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.All Australian dental schools have introduced problem-based learning (PBL) approaches to their programmes over the past decade, although the nature of the innovations has varied from school to school. Before one can ask whether PBL is better than the conventional style of education, one needs to consider three key issues. Firstly, we need to agree on what is meant by the term PBL; secondly, we need to decide what “better” means when comparing educational approaches; and thirdly, we must look carefully at how PBL is implemented in given situations. It is argued that PBL fulfils, at least in theory, some important principles relating to the development of new knowledge. It also represents a change in focus from teachers and teaching in conventional programmes to learners and learning. Generally, students enjoy PBL programmes more than conventional programmes and feel they are more nurturing. There is also some evidence of an improvement in clinical and diagnostic reasoning ability associated with PBL curricula. The main negative points raised about PBL are the costs involved and mixed reports of insufficient grounding of students in the basic sciences. Financial restraints will probably preclude the introduction of pure or fully integrated PBL programmes in Australian dental schools. However, our research and experience, as well as other published literature, indicate that well-planned hybrid PBL programmes, with matching methods of assessment, can foster development of the types of knowledge, skills and attributes that oral health professionals will need in the future.T Winning and G Townsen
Inactivation of promoter 1B of APC causes partial gene silencing: evidence for a significant role of the promoter in regulation and causative of familial adenomatous polyposis
Familial adenomatous polyposis (FAP) is caused by germline mutations in the adenomatous polyposis coli (APC) gene. Two promoters, 1A and 1B, have been recognized in APC, and 1B is thought to have a minor role in the regulation of the gene. We have identified a novel deletion encompassing half of this promoter in the largest family (Family 1) of the Swedish Polyposis Registry. The mutation leads to an imbalance in allele-specific expression of APC, and transcription from promoter 1B was highly impaired in both normal colorectal mucosa and blood from mutation carriers. To establish the significance of promoter 1B in normal colorectal mucosa (from controls), expression levels of specific transcripts from each of the promoters, 1A and 1B, were examined, and the expression from 1B was significantly higher compared with 1A. Significant amounts of transcripts generated from promoter 1B were also determined in a panel of 20 various normal tissues examined. In FAP-related tumors, the APC germline mutation is proposed to dictate the second hit. Mutations leaving two or three out of seven 20-amino-acid repeats in the central domain of APC intact seem to be required for tumorigenesis. We examined adenomas from mutation carriers in Family 1 for second hits in the entire gene without any findings, however, loss of the residual expression of the deleterious allele was observed. Three major conclusions of significant importance in relation to the function of APC can be drawn from this study; (i) germline inactivation of promoter 1B is disease causing in FAP; (ii) expression of transcripts from promoter 1B is generated at considerable higher levels compared with 1A, demonstrating a hitherto unknown importance of 1B; (iii) adenoma formation in FAP, caused by impaired function of promoter 1B, does not require homozygous inactivation of APC allowing for alternative genetic models as basis for adenoma formation
State Tax Differentials, Cross-Border Commuting, and Commuting Times in Multi-State Metropolitan Areas
We examine the effects of differences in income tax rates on commuting times within multi-state MSAs. Our theoretical model introduces a border into a model of an urban area and shows that differences in average tax rates distort commute times and interstate commutes. Empirically examining multi-state MSAs allows us to exploit tax policy discontinuities while holding fixed other characteristics. We identify large effects on commuting times for affluent households and homeowners in MSAs in which taxes are based on the state of residence. We discuss how the model and empirical design can be used to study other policy differences
- …