239 research outputs found
Stationarity of SLE
A new method to study a stopped hull of SLE(kappa,rho) is presented. In this
approach, the law of the conformal map associated to the hull is invariant
under a SLE induced flow. The full trace of a chordal SLE(kappa) can be studied
using this approach. Some example calculations are presented.Comment: 14 pages with 1 figur
A Fast Algorithm for Simulating the Chordal Schramm-Loewner Evolution
The Schramm-Loewner evolution (SLE) can be simulated by dividing the time
interval into N subintervals and approximating the random conformal map of the
SLE by the composition of N random, but relatively simple, conformal maps. In
the usual implementation the time required to compute a single point on the SLE
curve is O(N). We give an algorithm for which the time to compute a single
point is O(N^p) with p<1. Simulations with kappa=8/3 and kappa=6 both give a
value of p of approximately 0.4.Comment: 17 pages, 10 figures. Version 2 revisions: added a paragraph to
introduction, added 5 references and corrected a few typo
Note on SLE and logarithmic CFT
It is discussed how stochastic evolutions may be linked to logarithmic
conformal field theory. This introduces an extension of the stochastic Loewner
evolutions. Based on the existence of a logarithmic null vector in an
indecomposable highest-weight module of the Virasoro algebra, the
representation theory of the logarithmic conformal field theory is related to
entities conserved in mean under the stochastic process.Comment: 10 pages, LaTeX, v2: version to be publishe
Critical curves in conformally invariant statistical systems
We consider critical curves -- conformally invariant curves that appear at
critical points of two-dimensional statistical mechanical systems. We show how
to describe these curves in terms of the Coulomb gas formalism of conformal
field theory (CFT). We also provide links between this description and the
stochastic (Schramm-) Loewner evolution (SLE). The connection appears in the
long-time limit of stochastic evolution of various SLE observables related to
CFT primary fields. We show how the multifractal spectrum of harmonic measure
and other fractal characteristics of critical curves can be obtained.Comment: Published versio
Restriction Properties of Annulus SLE
For , a family of annulus SLE processes
were introduced in [14] to prove the reversibility of whole-plane
SLE. In this paper we prove that those annulus SLE
processes satisfy a restriction property, which is similar to that for chordal
SLE. Using this property, we construct curves crossing an
annulus such that, when any curves are given, the last curve is a chordal
SLE trace.Comment: 37 page
Duality of Chordal SLE
We derive some geometric properties of chordal SLE
processes. Using these results and the method of coupling two SLE processes, we
prove that the outer boundary of the final hull of a chordal
SLE process has the same distribution as the image of a
chordal SLE trace, where ,
, and the forces and are suitably
chosen. We find that for , the boundary of a standard chordal
SLE hull stopped on swallowing a fixed x\in\R\sem\{0\} is the image
of some SLE trace started from . Then we obtain a
new proof of the fact that chordal SLE trace is not reversible for
. We also prove that the reversal of SLE trace has
the same distribution as the time-change of some SLE trace for
certain values of and .Comment: In this third version, the referee's suggestions are taken into
consideration. More details are added. Some typos are corrected. The paper
has been accepted by Inventiones Mathematica
Loop-Erasure of Plane Brownian Motion
We use the coupling technique to prove that there exists a loop-erasure of a
plane Brownian motion stopped on exiting a simply connected domain, and the
loop-erased curve is the reversal of a radial SLE curve.Comment: 10 page
Critical speeding-up in a local dynamics for the random-cluster model
We study the dynamic critical behavior of the local bond-update (Sweeny)
dynamics for the Fortuin-Kasteleyn random-cluster model in dimensions d=2,3, by
Monte Carlo simulation. We show that, for a suitable range of q values, the
global observable S_2 exhibits "critical speeding-up": it decorrelates well on
time scales much less than one sweep, so that the integrated autocorrelation
time tends to zero as the critical point is approached. We also show that the
dynamic critical exponent z_{exp} is very close (possibly equal) to the
rigorous lower bound \alpha/\nu, and quite possibly smaller than the
corresponding exponent for the Chayes-Machta-Swendsen-Wang cluster dynamics.Comment: LaTex2e/revtex4, 4 pages, includes 5 figure
Global properties of Stochastic Loewner evolution driven by Levy processes
Standard Schramm-Loewner evolution (SLE) is driven by a continuous Brownian
motion which then produces a trace, a continuous fractal curve connecting the
singular points of the motion. If jumps are added to the driving function, the
trace branches. In a recent publication [1] we introduced a generalized SLE
driven by a superposition of a Brownian motion and a fractal set of jumps
(technically a stable L\'evy process). We then discussed the small-scale
properties of the resulting L\'evy-SLE growth process. Here we discuss the same
model, but focus on the global scaling behavior which ensues as time goes to
infinity. This limiting behavior is independent of the Brownian forcing and
depends upon only a single parameter, , which defines the shape of the
stable L\'evy distribution. We learn about this behavior by studying a
Fokker-Planck equation which gives the probability distribution for endpoints
of the trace as a function of time. As in the short-time case previously
studied, we observe that the properties of this growth process change
qualitatively and singularly at . We show both analytically and
numerically that the growth continues indefinitely in the vertical direction
for , goes as for , and saturates for . The probability density has two different scales corresponding to
directions along and perpendicular to the boundary. In the former case, the
characteristic scale is . In the latter case the scale
is for , and
for . Scaling functions for the probability density are given for
various limiting cases.Comment: Published versio
First passage times and distances along critical curves
We propose a model for anomalous transport in inhomogeneous environments,
such as fractured rocks, in which particles move only along pre-existing
self-similar curves (cracks). The stochastic Loewner equation is used to
efficiently generate such curves with tunable fractal dimension . We
numerically compute the probability of first passage (in length or time) from
one point on the edge of the semi-infinite plane to any point on the
semi-circle of radius . The scaled probability distributions have a variance
which increases with , a non-monotonic skewness, and tails that decay
faster than a simple exponential. The latter is in sharp contrast to
predictions based on fractional dynamics and provides an experimental signature
for our model.Comment: 5 pages, 5 figure
- …