5,645 research outputs found

    Frequency and temporal effects in linear optical quantum computing

    Get PDF
    Typically linear optical quantum computing (LOQC) models assume that all input photons are completely indistinguishable. In practice there will inevitably be non-idealities associated with the photons and the experimental setup which will introduce a degree of distinguishability between photons. We consider a non-deterministic optical controlled-NOT gate, a fundamental LOQC gate, and examine the effect of temporal and spectral distinguishability on its operation. We also consider the effect of utilizing non-ideal photon counters, which have finite bandwidth and time response.Comment: 10 pages, 9 figures, replaced with published versio

    Modeling photo-detectors in quantum optics

    Full text link
    Photo-detection plays a fundamental role in experimental quantum optics and is of particular importance in the emerging field of linear optics quantum computing. Present theoretical treatment of photo-detectors is highly idealized and fails to consider many important physical effects. We present a physically motivated model for photo-detectors which accommodates for the effects of finite resolution, bandwidth and efficiency, as well as dark-counts and dead-time. We apply our model to two simple well known applications, which illustrates the significance of these characteristics.Comment: 8 pages, 7 figure

    Error models for mode-mismatch in linear optics quantum computing

    Full text link
    One of the most significant challenges facing the development of linear optics quantum computing (LOQC) is mode-mismatch, whereby photon distinguishability is introduced within circuits, undermining quantum interference effects. We examine the effects of mode-mismatch on the parity (or fusion) gate, the fundamental building block in several recent LOQC schemes. We derive simple error models for the effects of mode-mismatch on its operation, and relate these error models to current fault tolerant threshold estimates.Comment: 6 pages, 7 figure

    Practical limitations in optical entanglement purification

    Get PDF
    Entanglement purification protocols play an important role in the distribution of entangled systems, which is necessary for various quantum information processing applications. We consider the effects of photo-detector efficiency and bandwidth, channel loss and mode-mismatch on the operation of an optical entanglement purification protocol. We derive necessary detector and mode-matching requirements to facilitate practical operation of such a scheme, without having to resort to destructive coincidence type demonstrations.Comment: 4 pages, 4 figure

    An alternative functional form for estimating the Lorenz Curve

    Get PDF
    We propose a simple single parameter functional form for the Lorenz curve. The underlying probability density function and cumulative density functions for the Lorenz curve are derived and are shown to have some useful properties. The proposed functional form is fitted to existing data sets and is shown to provide a better fit than existing single parameter Lorenz curves for the given data

    Entanglement dynamics and quasi-periodicity in discrete quantum walks

    Full text link
    We study the entanglement dynamics of discrete time quantum walks acting on bounded finite sized graphs. We demonstrate that, depending on system parameters, the dynamics may be monotonic, oscillatory but highly regular, or quasi-periodic. While the dynamics of the system are not chaotic since the system comprises linear evolution, the dynamics often exhibit some features similar to chaos such as high sensitivity to the system's parameters, irregularity and infinite periodicity. Our observations are of interest for entanglement generation, which is one primary use for the quantum walk formalism. Furthermore, we show that the systems we model can easily be mapped to optical beamsplitter networks, rendering experimental observation of quasi-periodic dynamics within reach.Comment: 9 pages, 8 figure
    corecore