35 research outputs found

    Origin of the Immirzi Parameter

    Full text link
    Using quadratic spinor techniques we demonstrate that the Immirzi parameter can be expressed as ratio between scalar and pseudo-scalar contributions in the theory and can be interpreted as a measure of how Einstein gravity differs from a generally constructed covariant theory for gravity. This interpretation is independent of how gravity is quantized. One of the important advantage of deriving the Immirzi parameter using the quadratic spinor techniques is to allow the introduction of renormalization scale associated with the Immirzi parameter through the expectation value of the spinor field upon quantization

    Quasi-Local Energy Flux of Spacetime Perturbation

    Full text link
    A general expression for quasi-local energy flux for spacetime perturbation is derived from covariant Hamiltonian formulation using functional differentiability and symplectic structure invariance, which is independent of the choice of the canonical variables and the possible boundary terms one initially puts into the Lagrangian in the diffeomorphism invariant theories. The energy flux expression depends on a displacement vector field and the 2-surface under consideration. We apply and test the expression in Vaidya spacetime. At null infinity the expression leads to the Bondi type energy flux obtained by Lindquist, Schwartz and Misner. On dynamical horizons with a particular choice of the displacement vector, it gives the area balance law obtained by Ashtekar and Krishnan.Comment: 8 pages, added appendix, version to appear in Phys. Rev.

    Stationary untrapped boundary conditions in general relativity

    Full text link
    A class of boundary conditions for canonical general relativity are proposed and studied at the quasi-local level. It is shown that for untrapped or marginal surfaces, fixing the area element on the 2-surface (rather than the induced 2-metric) and the angular momentum surface density is enough to have a functionally differentiable Hamiltonian, thus providing definition of conserved quantities for the quasi-local regions. If on the boundary the evolution vector normal to the 2-surface is chosen to be proportional to the dual expansion vector, we obtain a generalization of the Hawking energy associated with a generalized Kodama vector. This vector plays the role for the stationary untrapped boundary conditions which the stationary Killing vector plays for stationary black holes. When the dual expansion vector is null, the boundary conditions reduce to the ones given by the non-expanding horizons and the null trapping horizons.Comment: 11 pages, improved discussion section, a reference added, accepted for publication in Classical and Quantum Gravit

    Some Spinor-Curvature Identities

    Full text link
    We describe a class of spinor-curvature identities which exist for Riemannian or Riemann-Cartan geometries. Each identity relates an expression quadratic in the covariant derivative of a spinor field with an expression linear in the curvature plus an exact differential. Certain special cases in 3 and 4 dimensions which have been or could be used in applications to General Relativity are noted.Comment: 5 pages Plain TeX, NCU-GR-93-SSC

    A Quadratic Spinor Lagrangian for General Relativity

    Get PDF
    We present a new finite action for Einstein gravity in which the Lagrangian is quadratic in the covariant derivative of a spinor field. Via a new spinor-curvature identity, it is related to the standard Einstein-Hilbert Lagrangian by a total differential term. The corresponding Hamiltonian, like the one associated with the Witten positive energy proof is fully four-covariant. It defines quasi-local energy-momentum and can be reduced to the one in our recent positive energy proof. (Fourth Prize, 1994 Gravity Research Foundation Essay.)Comment: 5 pages (Plain TeX), NCU-GR-94-QSL

    The Hamiltonian boundary term and quasi-local energy flux

    Full text link
    The Hamiltonian for a gravitating region includes a boundary term which determines not only the quasi-local values but also, via the boundary variation principle, the boundary conditions. Using our covariant Hamiltonian formalism, we found four particular quasi-local energy-momentum boundary term expressions; each corresponds to a physically distinct and geometrically clear boundary condition. Here, from a consideration of the asymptotics, we show how a fundamental Hamiltonian identity naturally leads to the associated quasi-local energy flux expressions. For electromagnetism one of the four is distinguished: the only one which is gauge invariant; it gives the familiar energy density and Poynting flux. For Einstein's general relativity two different boundary condition choices correspond to quasi-local expressions which asymptotically give the ADM energy, the Trautman-Bondi energy and, moreover, an associated energy flux (both outgoing and incoming). Again there is a distinguished expression: the one which is covariant.Comment: 12 pages, no figures, revtex

    Scalar Field Cosmology II: Superfluidity, Quantum Turbulence, and Inflation

    Full text link
    We generalize the big-bang model in a previous paper by extending the real vacuum scalar field to a complex vacuum scalar field, within the FLRW framework. The phase dynamics of the scalar field, which makes the universe a superfluid, is described in terms of a density of quantized vortex lines, and a tangle of vortex lines gives rise to quantum turbulence. We propose that all the matter in the universe was created in the turbulence, through reconnection of vortex lines, a process necessary for the maintenance of the vortex tangle. The vortex tangle grows and decays, and its lifetime is the era of inflation. These ideas are implemented in a set of closed cosmological equations that describe the cosmic expansion driven by the scalar field on the one hand, and the vortex-matter dynamics on the other. We show how these two aspects decouple from each other, due to a vast difference in energy scales. The model is not valid beyond the inflation era, but the universe remains a superfluid afterwards. This gives rise to observable effects in the present universe, including dark matter, galactic voids, non-thermal filaments, and cosmic jets.Comment: 29 pages, 7 figures, published versio

    Ashtekar's New Variables and Positive Energy

    Full text link
    We discuss earlier unsuccessful attempts to formulate a positive gravitational energy proof in terms of the New Variables of Ashtekar. We also point out the difficulties of a Witten spinor type proof. We then use the special orthonormal frame gauge conditions to obtain a locally positive expression for the New Variables Hamiltonian and thereby a ``localization'' of gravitational energy as well as a positive energy proof.Comment: 12 pages Plain Te
    corecore