5,917 research outputs found

    Electronic Structure of Electron-doped Sm1.86Ce0.14CuO4: Strong `Pseudo-Gap' Effects, Nodeless Gap and Signatures of Short Range Order

    Full text link
    Angle resolved photoemission (ARPES) data from the electron doped cuprate superconductor Sm1.86_{1.86}Ce0.14_{0.14}CuO4_4 shows a much stronger pseudo-gap or "hot-spot" effect than that observed in other optimally doped nn-type cuprates. Importantly, these effects are strong enough to drive the zone-diagonal states below the chemical potential, implying that d-wave superconductivity in this compound would be of a novel "nodeless" gap variety. The gross features of the Fermi surface topology and low energy electronic structure are found to be well described by reconstruction of bands by a 2×2\sqrt{2}\times\sqrt{2} order. Comparison of the ARPES and optical data from the samesame sample shows that the pseudo-gap energy observed in optical data is consistent with the inter-band transition energy of the model, allowing us to have a unified picture of pseudo-gap effects. However, the high energy electronic structure is found to be inconsistent with such a scenario. We show that a number of these model inconsistencies can be resolved by considering a short range ordering or inhomogeneous state.Comment: 5 pages, 4 figure

    Stationary untrapped boundary conditions in general relativity

    Full text link
    A class of boundary conditions for canonical general relativity are proposed and studied at the quasi-local level. It is shown that for untrapped or marginal surfaces, fixing the area element on the 2-surface (rather than the induced 2-metric) and the angular momentum surface density is enough to have a functionally differentiable Hamiltonian, thus providing definition of conserved quantities for the quasi-local regions. If on the boundary the evolution vector normal to the 2-surface is chosen to be proportional to the dual expansion vector, we obtain a generalization of the Hawking energy associated with a generalized Kodama vector. This vector plays the role for the stationary untrapped boundary conditions which the stationary Killing vector plays for stationary black holes. When the dual expansion vector is null, the boundary conditions reduce to the ones given by the non-expanding horizons and the null trapping horizons.Comment: 11 pages, improved discussion section, a reference added, accepted for publication in Classical and Quantum Gravit

    Estimating Carbon Dynamics in an Intact Lowland Mixed Dipterocarp Forest Using a Forest Carbon Model

    Get PDF
    Intact dipterocarp forests in Asia act as crucial carbon (C) reservoirs, and it is therefore important to investigate the C dynamics in these forests. We estimated C dynamics, together with net ecosystem production (NEP), in an intact tropical dipterocarp forest of Brunei Darussalam. Fifty-four simulation units (plots; 20 m × 20 m) were established and initial C stocks were determined via direct field measurement. The C dynamics were annually simulated with a regression model and the Forest Biomass and Dead organic matter Carbon (FBDC) model. The initial C stock (Mg C·ha−1) of biomass, litter, dead wood and mineral soil were 213.1 ± 104.8, 2.0 ± 0.8, 31.3 ± 38.8, and 80.7 ± 15.5, respectively. Their annual changes (Mg C·ha−1·year−1) were 3.2 ± 1.1, 0.2 ± 0.2, −3.7 ± 6.1, and −0.3 ± 1.1, respectively. NEP was −0.6 ± 6.1 Mg C·ha−1·year−1, showing large heterogeneity among the plots. The initial C stocks of biomass and dead wood, biomass turnover rates and dead wood decay rates were elucidated as dominant factors determining NEP in a sensitivity analysis. Accordingly, investigation on those input data can constrain an uncertainty in determining NEP in the intact tropical forests

    Ashtekar's New Variables and Positive Energy

    Full text link
    We discuss earlier unsuccessful attempts to formulate a positive gravitational energy proof in terms of the New Variables of Ashtekar. We also point out the difficulties of a Witten spinor type proof. We then use the special orthonormal frame gauge conditions to obtain a locally positive expression for the New Variables Hamiltonian and thereby a ``localization'' of gravitational energy as well as a positive energy proof.Comment: 12 pages Plain Te

    Another positivity proof and gravitational energy localizations

    Full text link
    Two locally positive expressions for the gravitational Hamiltonian, one using 4-spinors the other special orthonormal frames, are reviewed. A new quadratic 3-spinor-curvature identity is used to obtain another positive expression for the Hamiltonian and thereby a localization of gravitational energy and positive energy proof. These new results provide a link between the other two methods. Localization and prospects for quasi-localization are discussed.Comment: 14 pages REVTe

    The Hamiltonian boundary term and quasi-local energy flux

    Full text link
    The Hamiltonian for a gravitating region includes a boundary term which determines not only the quasi-local values but also, via the boundary variation principle, the boundary conditions. Using our covariant Hamiltonian formalism, we found four particular quasi-local energy-momentum boundary term expressions; each corresponds to a physically distinct and geometrically clear boundary condition. Here, from a consideration of the asymptotics, we show how a fundamental Hamiltonian identity naturally leads to the associated quasi-local energy flux expressions. For electromagnetism one of the four is distinguished: the only one which is gauge invariant; it gives the familiar energy density and Poynting flux. For Einstein's general relativity two different boundary condition choices correspond to quasi-local expressions which asymptotically give the ADM energy, the Trautman-Bondi energy and, moreover, an associated energy flux (both outgoing and incoming). Again there is a distinguished expression: the one which is covariant.Comment: 12 pages, no figures, revtex
    • …
    corecore