21 research outputs found
Metabolic effects of diets differing in glycaemic index depend on age and endogenous GIP
Aims/hypothesis
High- vs low-glycaemic index (GI) diets unfavourably affect body fat mass and metabolic markers in rodents. Different effects of these diets could be age-dependent, as well as mediated, in part, by carbohydrate-induced stimulation of glucose-dependent insulinotrophic polypeptide (GIP) signalling.
Methods
Young-adult (16 weeks) and aged (44 weeks) male wild-type (C57BL/6J) and GIP-receptor knockout (Gipr −/− ) mice were exposed to otherwise identical high-carbohydrate diets differing only in GI (20–26 weeks of intervention, n = 8–10 per group). Diet-induced changes in body fat distribution, liver fat, locomotor activity, markers of insulin sensitivity and substrate oxidation were investigated, as well as changes in the gene expression of anorexigenic and orexigenic hypothalamic factors related to food intake.
Results
Body weight significantly increased in young-adult high- vs low-GI fed mice (two-way ANOVA, p < 0.001), regardless of the Gipr genotype. The high-GI diet in young-adult mice also led to significantly increased fat mass and changes in metabolic markers that indicate reduced insulin sensitivity. Even though body fat mass also slightly increased in high- vs low-GI fed aged wild-type mice (p < 0.05), there were no significant changes in body weight and estimated insulin sensitivity in these animals. However, aged Gipr −/− vs wild-type mice on high-GI diet showed significantly lower cumulative net energy intake, increased locomotor activity and improved markers of insulin sensitivity.
Conclusions/interpretation
The metabolic benefits of a low-GI diet appear to be more pronounced in younger animals, regardless of the Gipr genotype. Inactivation of GIP signalling in aged animals on a high-GI diet, however, could be beneficial
Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus
BACKGROUND: Diabetic nephropathy is a serious complication of diabetes mellitus and is associated with considerable morbidity and high mortality. There is increasing evidence to suggest that dysregulation of the epigenome is involved in diabetic nephropathy. We assessed whether epigenetic modification of DNA methylation is associated with diabetic nephropathy in a case-control study of 192 Irish patients with type 1 diabetes mellitus (T1D). Cases had T1D and nephropathy whereas controls had T1D but no evidence of renal disease. METHODS: We performed DNA methylation profiling in bisulphite converted DNA from cases and controls using the recently developed Illumina Infinium(R) HumanMethylation27 BeadChip, that enables the direct investigation of 27,578 individual cytosines at CpG loci throughout the genome, which are focused on the promoter regions of 14,495 genes. RESULTS: Singular Value Decomposition (SVD) analysis indicated that significant components of DNA methylation variation correlated with patient age, time to onset of diabetic nephropathy, and sex. Adjusting for confounding factors using multivariate Cox-regression analyses, and with a false discovery rate (FDR) of 0.05, we observed 19 CpG sites that demonstrated correlations with time to development of diabetic nephropathy. Of note, this included one CpG site located 18 bp upstream of the transcription start site of UNC13B, a gene in which the first intronic SNP rs13293564 has recently been reported to be associated with diabetic nephropathy. CONCLUSION: This high throughput platform was able to successfully interrogate the methylation state of individual cytosines and identified 19 prospective CpG sites associated with risk of diabetic nephropathy. These differences in DNA methylation are worthy of further follow-up in replication studies using larger cohorts of diabetic patients with and without nephropathy
Effects of MCF2L2, ADIPOQ and SOX2 genetic polymorphisms on the development of nephropathy in type 1 Diabetes Mellitus
<p>Abstract</p> <p>Background</p> <p><it>MCF2L2, ADIPOQ </it>and <it>SOX2 </it>genes are located in chromosome 3q26-27, which is linked to diabetic nephropathy (DN). <it>ADIPOQ </it>and <it>SOX2 </it>genetic polymorphisms are found to be associated with DN. In the present study, we first investigated the association between <it>MCF2L2 </it>and DN, and then evaluated effects of these three genes on the development of DN.</p> <p>Methods</p> <p>A total of 1177 type 1 diabetes patients with and without DN from the GoKinD study were genotyped with TaqMan allelic discrimination. All subjects were of European descent.</p> <p>Results</p> <p>Leu359Ile T/G variant in the <it>MCF2L2 </it>gene was found to be associated with DN in female subjects (P = 0.017, OR = 0.701, 95%CI 0.524-0.938) but not in males. The GG genotype carriers among female patients with DN had tendency decreased creatinine and cystatin levels compared to the carriers with either TT or TG genotypes. This polymorphism <it>MCF2L2-</it>rs7639705 together with SNPs of <it>ADIPOQ</it>-rs266729 and <it>SOX2</it>-rs11915160 had combined effects on decreased risk of DN in females (P = 0.001).</p> <p>Conclusion</p> <p>The present study provides evidence that <it>MCF2L2</it>, <it>ADIPOQ </it>and <it>SOX2 </it>genetic polymorphisms have effects on the resistance of DN in female T1D patients, and suggests that the linkage with DN in chromosome 3q may be explained by the cumulated genetic effects.</p
Genetic polymorphisms of angiotensin-2 type 1 receptor and angiotensinogen and risk of renal dysfunction and coronary heart disease in type 2 diabetes mellitus
<p>Abstract</p> <p>Background</p> <p>Increased activation of the renin-angiotensin system (RAS) may be important in promoting coronary heart disease (CHD) and renal dysfunction, but limited data are available on associations between angiotensin type 1 receptor (<it>AGT1R</it>) and angiotensinogen (<it>AGT</it>) genotypes in type 2 diabetes.</p> <p>Methods</p> <p>Study participants were diabetics from the Health Professionals Follow-Up Study (HPFS) and the Nurses' Health Study (NHS). We analyzed single nucleotide polymorphisms (SNPs) associated with cardiovascular pathophysiology (including <it>AGT1R </it>T573C, <it>AGT1R </it>A1166C, and <it>AGT </it>M235T) and presence of renal dysfunction (eGFR<60 ml/min/1.73 m<sup>2</sup>) or history of CHD.</p> <p>Results</p> <p>The <it>AGT1R </it>1166 C-allele was associated with eGFR<60 ml/min/1.73 m<sup>2 </sup>(multivariable OR 1.63 [1.01, 2.65]) in the HPFS men (n = 733) and in the combined dataset (n = 1566) (OR 1.42 [1.02, 1.98]). The <it>AGT1R </it>1166 C-allele was also associated with CHD in men (OR 1.57 [1.10, 2.24]). In NHS women (n = 833), <it>AGT </it>235T-allele was associated with CHD (OR 1.72 [1.20, 2.47]). Removal of hypertension from the fully adjusted models did not influence results, suggesting that the associations may not be mediated by hypertension. There were significant interactions between sex and <it>AGT1R </it>1166 C-allele (p = 0.008) and <it>AGT </it>M235T (p = 0.03) in models for CHD. No significant associations were seen between <it>AGT1R </it>T573 C-allele and renal dysfunction or CHD.</p> <p>Conclusion</p> <p>Polymorphisms in <it>AGT1R </it>and <it>AGT </it>genes are associated with renal dysfunction and CHD in type 2 diabetes and further support the important role of the RAS in these complications. Sex may modify associations between <it>AGT1R </it>1166 C-allele and <it>AGT </it>235T and CHD in type 2 diabetes.</p
The Siblings With Ischemic Stroke Study (SWISS) Protocol
BACKGROUND: Family history and twins studies suggest an inherited component to ischemic stroke risk. Candidate gene association studies have been performed but have limited capacity to identify novel risk factor genes. The Siblings With Ischemic Stroke Study (SWISS) aims to conduct a genome-wide scan in sibling pairs concordant or discordant for ischemic stroke to identify novel genetic risk factors through linkage analysis. METHODS: Screening at multiple clinical centers identifies patients (probands) with radiographically confirmed ischemic stroke and a family history of at least 1 living full sibling with stroke. After giving informed consent, without violating privacy among other family members, the proband invites siblings concordant and discordant for stroke to participate. Siblings then contact the study coordinating center. The diagnosis of ischemic stroke in potentially concordant siblings is confirmed by systematic centralized review of medical records. The stroke-free status of potentially discordant siblings is confirmed by validated structured telephone interview. Blood samples for DNA analysis are taken from concordant sibling pairs and, if applicable, from 1 discordant sibling. Epstein-Barr virus-transformed lymphoblastoid cell lines are created, and a scan of the human genome is planned. DISCUSSION: Conducting adequately powered genomics studies of stroke in humans is challenging because of the heterogeneity of the stroke phenotype and the difficulty of obtaining DNA samples from clinically well-characterized members of a cohort of stroke pedigrees. The multicentered design of this study is intended to efficiently assemble a cohort of ischemic stroke pedigrees without invoking community consent or using cold-calling of pedigree members
Genetic association analyses of non-synonymous single nucleotide polymorphisms in diabetic nephropathy
AIMS/HYPOTHESIS: Diabetic nephropathy, characterised by persistent proteinuria, hypertension and progressive kidney failure, affects a subset of susceptible individuals with diabetes. It is also a leading cause of end-stage renal disease (ESRD). Non-synonymous (ns) single nucleotide polymorphisms (SNPs) have been reported to contribute to genetic susceptibility in both monogenic disorders and common complex diseases. The objective of this study was to investigate whether nsSNPs are involved in susceptibility to diabetic nephropathy using a case-control design. METHODS: White type 1 diabetic patients with (cases) and without (controls) nephropathy from eight centres in the UK and Ireland were genotyped for a selected subset of nsSNPs using Illumina's GoldenGate BeadArray assay. A χ(2) test for trend, stratified by centre, was used to assess differences in genotype distribution between cases and controls. Genomic control was used to adjust for possible inflation of test statistics, and the False Discovery Rate method was used to account for multiple testing. RESULTS: We assessed 1,111 nsSNPs for association with diabetic nephropathy in 1,711 individuals with type 1 diabetes (894 cases, 817 controls). A number of SNPs demonstrated a significant difference in genotype distribution between groups before but not after correction for multiple testing. Furthermore, neither subgroup analysis (diabetic nephropathy with ESRD or diabetic nephropathy without ESRD) nor stratification by duration of diabetes revealed any significant differences between groups. CONCLUSIONS/INTERPRETATION: The nsSNPs investigated in this study do not appear to contribute significantly to the development of diabetic nephropathy in patients with type 1 diabetes