623 research outputs found

    Accounting for exogenous influences in a benevolent performance evaluation of teachers

    Get PDF
    Students’ evaluations of teacher performance (SETs) are increasingly used by universities and colleges for teaching improvement and decision making (e.g., promotion or tenure). However, SETs are highly controversial mainly due to two issues: (1) teachers value various aspects of excellent teaching differently, and, to be fair, (2) SETs should be determined solely by the teacher’s actual performance in the classroom, not by other influences (related to the teacher, the students or the course) which are not under his or her control. To account for these two issues, this paper constructs SETs using a specially tailored version of the popular non-parametric Data Envelopment Analysis (DEA) approach. In particular, in a so-called ‘Benefit of the doubt’ model we account for different values and interpretations that teachers attach to ‘good teaching’. Within this model, we reduce the impact of measurement errors and a-typical observations, and account explicitly for heterogeneous background characteristics arising from teacher, student and course characteristics. To show the potentiality of the method, we examine teacher performance for the Hogeschool Universiteit Brussel (located in Belgium). Our findings suggest that heterogeneous background characteristics play an important role in teacher performance.Teacher performance, Data envelopment analysis, Conditional efficiency, Education.

    To publish or not to publish? On the aggregation and drivers of research performance

    Get PDF
    This paper presents a methodology to aggregate multidimensional research output. Using a tailored version of the non-parametric Data Envelopment Analysis model, we account for the large heterogeneity in research output and the individual researcher preferences by endogenously weighting the various output dimensions. The approach offers three important advantages compared to the traditional approaches: (1) flexibility in the aggregation of different research outputs into an overall evaluation score; (2) a reduction of the impact of measurement errors and a-typical observations; and (3) a correction for the influences of a wide variety of factors outside the evaluated researcher’s control. As a result, research evaluations are more effective representations of actual research performance. The methodology is illustrated on a data set of all faculty members at a large polytechnic university in Belgium. The sample includes questionnaire items on the motivation and perception of the researcher. This allows us to explore whether motivation and background characteristics (such as age, gender, retention, etc.,) of the researchers explain variations in measured research performance

    Engineered valley-orbit splittings in quantum confined nanostructures in silicon

    Get PDF
    An important challenge in silicon quantum electronics in the few electron regime is the potentially small energy gap between the ground and excited orbital states in 3D quantum confined nanostructures due to the multiple valley degeneracies of the conduction band present in silicon. Understanding the "valley-orbit" (VO) gap is essential for silicon qubits, as a large VO gap prevents leakage of the qubit states into a higher dimensional Hilbert space. The VO gap varies considerably depending on quantum confinement, and can be engineered by external electric fields. In this work we investigate VO splitting experimentally and theoretically in a range of confinement regimes. We report measurements of the VO splitting in silicon quantum dot and donor devices through excited state transport spectroscopy. These results are underpinned by large-scale atomistic tight-binding calculations involving over 1 million atoms to compute VO splittings as functions of electric fields, donor depths, and surface disorder. The results provide a comprehensive picture of the range of VO splittings that can be achieved through quantum engineering.Comment: 4 pages, 4 figure

    Lifetime enhanced transport in silicon due to spin and valley blockade

    Get PDF
    We report the observation of Lifetime Enhanced Transport (LET) based on perpendicular valleys in silicon by transport spectroscopy measurements of a two-electron system in a silicon transistor. The LET is manifested as a peculiar current step in the stability diagram due to a forbidden transition between an excited state and any of the lower energy states due perpendicular valley (and spin) configurations, offering an additional current path. By employing a detailed temperature dependence study in combination with a rate equation model, we estimate the lifetime of this particular state to exceed 48 ns. The two-electron spin-valley configurations of all relevant confined quantum states in our device were obtained by a large-scale atomistic tight-binding simulation. The LET acts as a signature of the complicated valley physics in silicon; a feature that becomes increasingly important in silicon quantum devices.Comment: 4 pages, 4 figures. (The current version (v3) is the result of splitting up the previous version (v2), and has been completely rewritten

    Spin Wave Response in the Dilute Quasi-one Dimensional Ising-like Antiferromagnet CsCo_{0.83}Mg_{0.17}Br_3

    Full text link
    Inelastic neutron scattering profiles of spin waves in the dilute quasi-one-dimensional Ising-like antiferromagnet CsCo_{0.83}Mg_{0.17}Br_3 have been investigated. Calculations of S^{xx}(Q,omega), based on an effective spin Hamiltonian, accurately describe the experimental spin wave spectrum of the 2J mode. The Q dependence of the energy of this spin wave mode follows the analytical prediction omega_{xx}(Q)=(2J)(1-5epsilon^{2}cos^{2}Qa+2epsilon^{2})^{1/2}, calculated by Ishimura and Shiba using perturbation theory.Comment: 13 pages, 4 figure

    Enhancing workflow-nets with data for trace completion

    Full text link
    The growing adoption of IT-systems for modeling and executing (business) processes or services has thrust the scientific investigation towards techniques and tools which support more complex forms of process analysis. Many of them, such as conformance checking, process alignment, mining and enhancement, rely on complete observation of past (tracked and logged) executions. In many real cases, however, the lack of human or IT-support on all the steps of process execution, as well as information hiding and abstraction of model and data, result in incomplete log information of both data and activities. This paper tackles the issue of automatically repairing traces with missing information by notably considering not only activities but also data manipulated by them. Our technique recasts such a problem in a reachability problem and provides an encoding in an action language which allows to virtually use any state-of-the-art planning to return solutions

    A hybrid double-dot in silicon

    Full text link
    We report electrical measurements of a single arsenic dopant atom in the tunnel-barrier of a silicon SET. As well as performing electrical characterization of the individual dopant, we study series electrical transport through the dopant and SET. We measure the triple points of this hybrid double dot, using simulations to support our results, and show that we can tune the electrostatic coupling between the two sub-systems.Comment: 11 pages, 6 figure

    Stark tuning of the charge states of a two-donor molecule in silicon

    Full text link
    Gate control of phosphorus donor based charge qubits in Si is investigated using a tight-binding approach. Excited molecular states of P2+ are found to impose limits on the allowed donor separations and operating gate voltages. The effects of surface (S) and barrier (B) gates are analyzed in various voltage regimes with respect to the quantum confined states of the whole device. Effects such as interface ionization, saturation of the tunnel coupling, sensitivity to donor and gate placement are also studied. It is found that realistic gate control is smooth for any donor separation, although at certain donor orientations the S and B gates may get switched in functionality. This paper outlines and analyzes the various issues that are of importance in practical control of such donor molecular systems.Comment: 8 pages, 9 figure
    • …
    corecore