13 research outputs found
Baltimore Supersite: Highly time- and size-resolved concentrations of urban PM2.5 and its constituents for resolution of sources and immune responses
Protection of public health from the effects of air particulate matter (PM) requires measurements and methods that assess the PM chemical constituents, physical properties, and their sources. Sampling was conducted at three sites in the Baltimore area: a source-oriented (industrial) area in south Baltimore (FMC site), and two receptor area sites (Clifton Park and Ponca Street). FMC measurements were made for the initial 1-month of the project; Clifton measurements lasted for about 2 months, while measurements at Ponca Street lasted for about 9.5 months. Pollutant samples were collected at intervals ranging from 5 min to 1 h using semi-continuous monitors for PM2.5 mass, sulfate, nitrate, elemental and organic carbon, particle number size distributions (10–20,000 nm), CO, NOx, O3, 11 metals, and mass spectra of individual particles, throughout the project. In addition to standard meteorological measurements, a 3D-sonic anemometer and a LIDAR system were operated during selected periods as were a rotating drum impactor with 3- to 6-h resolution and a filter/PUF sampler for 3-h measurements of organic compounds. Standard speciation and FRM mass measurements were also made. This report describes the types of measurements that were made at the various sites of the Baltimore Supersite program as well as presents the summary statistics for some of the PM measurements that have been made. The measurements of aerosol mass, major components, and size distribution data for the three sites are compared. Results show comparable PM concentrations at Ponca Street and Clifton Park. Increased variability was observed at Ponca Street
Recommended from our members
Natural organic compounds as tracers for biomass combustion in aerosols
Biomass combustion is an important primary source of carbonaceous particles in the global atmosphere. Although various molecular markers have already been proposed for this process, additional specific organic tracers need to be characterized. The injection of natural product organic tracers to smoke occurs primarily by direct volatilization/steam stripping and by thermal alteration based on combustion temperature. The degree of alteration increases as the burn temperature rises and the moisture content of the fuel decreases. Although the molecular composition of organic matter in smoke particles is highly variable, the molecular structures of the tracers are generally source specific. The homologous compound series and biomarkers present in smoke particles are derived directly from plant wax, gum and resin by volatilization and secondarily from pyrolysis of biopolymers, wax, gum and resin. The complexity of the organic components of smoke aerosol is illustrated with examples from controlled burns of temperate and tropical biomass fuels. Burning of biomass from temperate regions (i.e., conifers) yields characteristic tracers from diterpenoids as well as phenolics and other oxygenated species, which are recognizable in urban airsheds. The major organic components of smoke particles from tropical biomass are straight-chain, aliphatic and oxygenated compounds and triterpenoids. The precursor-to-product approach of organic geochemistry can be applied successfully to provide tracers for studying smoke plume chemistry and dispersion
Recommended from our members
Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon
Extractable organic compounds having between 6 to 40 carbon atoms comprise an important mass fraction of the fine particulate matter samples from major urban emission sources. Depending on the emission source type, this solvent-soluble fraction accounts for <20% to 100% of the total organic aerosol mass, as measured by quantitative high-resolution has chromatography (HRGC) with flame ionization detection. In addition to total extract quantitation, HRGC can be applied to further analyses of the mass distributions of elutable organics present in the complex aerosol extract mixtures, thus generating profiles that serve as fingerprints'' for the sources of interest. This HRGC analytical method is applied to emission source samples that contain between 7 to 12,000 {mu}g/filter organic carbon. It is shown to be a sensitive technique for analysis of carbonaceous aerosol extract mixtures having diverse mass loadings and species distributions. This study describes the analytical chemical methods that have been applied to: the construction of chemical mass balances based on the mass of fine organic aerosol emitted for major urban sources of particulate carbon; and the generation of discrete emission source chemical profiles derived from chromatographic characteristics of the organic aerosol components. 21 refs., 1 fig., 2 tabs