488 research outputs found
Bulk spectral function sum rule in QCD-like theories with a holographic dual
We derive the sum rule for the spectral function of the stress-energy tensor
in the bulk (uniform dilatation) channel in a general class of strongly coupled
field theories. This class includes theories holographically dual to a theory
of gravity coupled to a single scalar field, representing the operator of the
scale anomaly. In the limit when the operator becomes marginal, the sum rule
coincides with that in QCD. Using the holographic model, we verify explicitly
the cancellation between large and small frequency contributions to the
spectral integral required to satisfy the sum rule in such QCD-like theories.Comment: 16 pages, 2 figure
On inversions and Doob -transforms of linear diffusions
Let be a regular linear diffusion whose state space is an open interval
. We consider a diffusion which probability law is
obtained as a Doob -transform of the law of , where is a positive
harmonic function for the infinitesimal generator of on . This is the
dual of with respect to where is the speed measure of
. Examples include the case where is conditioned to stay above
some fixed level. We provide a construction of as a deterministic
inversion of , time changed with some random clock. The study involves the
construction of some inversions which generalize the Euclidean inversions.
Brownian motion with drift and Bessel processes are considered in details.Comment: 19 page
- …