24,870 research outputs found

    On the Tidal Dissipation of Obliquity

    Full text link
    We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an initial random orientation of obliquity and parameters relevant to the observed population, the obliquity of hot Jupiters does not evolve to purely aligned systems. In fact, the obliquity evolves to either prograde, retrograde or 90^{o} orbits where the torque due to tidal perturbations vanishes. This distribution is incompatible with observations which show that hot jupiters around cool stars are generally aligned. This calls into question the viability of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters around cool stars.Comment: 6 pages, 4 figures, accepted at ApJ

    Geometric Langevin equations on submanifolds and applications to the stochastic melt-spinning process of nonwovens and biology

    Full text link
    In this article we develop geometric versions of the classical Langevin equation on regular submanifolds in euclidean space in an easy, natural way and combine them with a bunch of applications. The equations are formulated as Stratonovich stochastic differential equations on manifolds. The first version of the geometric Langevin equation has already been detected before by Leli\`evre, Rousset and Stoltz with a different derivation. We propose an additional extension of the models, the geometric Langevin equations with velocity of constant absolute value. The latters are seemingly new and provide a galaxy of new, beautiful and powerful mathematical models. Up to the authors best knowledge there are not many mathematical papers available dealing with geometric Langevin processes. We connect the first version of the geometric Langevin equation via proving that its generator coincides with the generalized Langevin operator proposed by Soloveitchik, Jorgensen and Kolokoltsov. All our studies are strongly motivated by industrial applications in modeling the fiber lay-down dynamics in the production process of nonwovens. We light up the geometry occuring in these models and show up the connection with the spherical velocity version of the geometric Langevin process. Moreover, as a main point, we construct new smooth industrial relevant three-dimensional fiber lay-down models involving the spherical Langevin process. Finally, relations to a class of self-propelled interacting particle systems with roosting force are presented and further applications of the geometric Langevin equations are given

    Internal Gravity Waves Modulate the Apparent Misalignment of Exoplanets around Hot Stars

    Full text link
    We propose that the observed misalignment between extra-solar planets and their hot host stars can be explained by angular momentum transport within the host star. Observations have shown that this misalignment is preferentially around hot stars, which have convective cores and extended radiative envelopes. This situation is amenable to substantial angular momentum transport by internal gravity waves (IGW) generated at the convective-radiative interface. Here we present numerical simulations of this process and show that IGW can modulate the surface rotation of the star. With these two- dimensional simulations we show that IGW could explain the retrograde orbits observed in systems such as HAT-P-6 and HAT-P-7, however, extension to high obliquity objects will await future three- dimensional simulations. We note that these results also imply that individual massive stars should show temporal variations in their v sini measurements.Comment: 6 pages, 2 figures, Accepted for publication in ApJ

    Standardized Consent Forms for Surgical Procedures: An Intervention to Improve the Resident-led Informed Consent Process

    Get PDF
    Objectives and Goals: To provide high quality, consistent consent forms for common surgical procedures and improve resident workflow by creating and implementing standardized printed consents for common surgical procedures. These consents will be used by residents consenting patients in the ED or inpatient setting. Consents shall include standardized procedure descriptions, risks and benefits of the procedure, and alternative treatment option descriptions, risks and benefitshttps://jdc.jefferson.edu/patientsafetyposters/1057/thumbnail.jp

    Nonlinear self-adjointness and conservation laws

    Full text link
    The general concept of nonlinear self-adjointness of differential equations is introduced. It includes the linear self-adjointness as a particular case. Moreover, it embraces the strict self-adjointness and quasi self-adjointness introduced earlier by the author. It is shown that the equations possessing the nonlinear self-adjointness can be written equivalently in a strictly self-adjoint form by using appropriate multipliers. All linear equations possess the property of nonlinear self-adjointness, and hence can be rewritten in a nonlinear strictly self-adjoint. For example, the heat equation utΔu=0u_t - \Delta u = 0 becomes strictly self-adjoint after multiplying by u1.u^{-1}. Conservation laws associated with symmetries can be constructed for all differential equations and systems having the property of nonlinear self-adjointness

    Vacuum-UV negative photoion spectroscopy of CH3F, CH3Cl and CH3Br

    Get PDF
    Using tunable vacuum-UV radiation from a synchrotron, negative ions are detected by quadrupolar mass spectrometry following photoexcitation of three gaseous halogenated methanes CH3_3X (X = F,Cl,Br). The anions X^-, H^-, CX^-, CHX^- and CH2_2X^- are observed, and their ion yields recorded in the range 8-35 eV. The anions show a linear dependence of signal with pressure, showing that they arise from unimolecular ion-pair dissociation, generically described as AB + hvv \rightarrow A^- + B+^+ (+ neutrals). Absolute cross sections for ion-pair formation are obtained by calibrating the signal intensities with those of F^- from both SF6_6 and CF4_4. The cross sections for formation of X^- + CH3_3+^+ are much greater than for formation of CH2_2X^- + H+^+. In common with many quadrupoles, the spectra of mm/zz 1 (H^-) anions show contributions from all anions, and only for CH3_3Br is it possible to perform the necessary subtraction to obtain the true H^- spectrum. The anion cross sections are normalised to vacuum-UV absorption cross sections to obtain quantum yields for their production. The appearance energies of X^- and CH2_2X^- are used to calculate upper limits to 298 K bond dissociation energies for Do^o (H3_3C-X) and Do^o (XH2_2C-H) which are consistent with literature values. The spectra suggest that most of the anions are formed indirectly by crossing of Rydberg states of the parent molecule onto an ion-pair continuum. The one exception is the lowest-energy peak of F^- from CH3_3F at 13.4 eV, where its width and lack of structure suggest it may correspond to a direct ion-pair transition

    Kinematics of Current Region Fragmentation in Semi-Inclusive Deeply Inelastic Scattering

    Get PDF
    Different kinematical regimes of semi-inclusive deeply inelastic scattering (SIDIS) processes correspond to different underlying partonic pictures, and it is important to understand the transition between them. This is particularly the case when there is sensitivity to intrinsic transverse momentum, in which case kinematical details can become especially important. We address the question of how to identify the current fragmentation region --- the kinematical regime where a factorization picture with fragmentation functions is appropriate. We distinguish this from soft and target fragmentation regimes. Our criteria are based on the kinematic regions used in derivations of factorization theorems. We argue that, when hard scales are of order a few GeVs, there is likely significant overlap between different rapidity regions that are normally understood to be distinct. We thus comment on the need to take this into account with more unified descriptions of SIDIS, which should span all rapidities for the produced hadron. Finally, we propose general criteria for estimating the proximity to the current region at large Q.Comment: 9 Pages, 5 figures; minor clarifications and corrections, version appearing in Physics Letters

    The diffusion of IP telephony and vendors' commercialisation strategies

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in the Journal of Information Technology. The definitive publisher-authenticated version is available at the link below.The Internet telephony (IP telephony) has been presented as a technology that can replace existing fixed-line services and disrupt the telecommunications industry by offering new low-priced services. This study investigates the diffusion of IP telephony in Denmark by focusing on vendors’ commercialisation strategies. The theory of disruptive innovation is introduced to investigate vendors’ perceptions about IP telephony and explore their strategies that affect the diffusion process in the residential market. The analysis is based on interview data collected from the key market players. The study's findings suggest that IP telephony is treated as a sustaining innovation that goes beyond the typical voice transmission and enables provision of advanced services such as video telephony
    corecore