262 research outputs found
DNA-Binding Specificity Changes in the Evolution of Forkhead Transcription Factors
The evolution of transcriptional regulatory networks entails the expansion and diversification of transcription factor (TF) families. The forkhead family of TFs, defined by a highly conserved winged helix DNA-binding domain (DBD), has diverged into dozens of subfamilies in animals, fungi, and related protists. We have used a combination of maximum-likelihood phylogenetic inference and independent, comprehensive functional assays of DNA-binding capacity to explore the evolution of DNA-binding specificity within the forkhead family. We present converging evidence that similar alternative sequence preferences have arisen repeatedly and independently in the course of forkhead evolution. The vast majority of DNA-binding specificity changes we observed are not explained by alterations in the known DNA-contacting amino acid residues conferring specificity for canonical forkhead binding sites. Intriguingly, we have found forkhead DBDs that retain the ability to bind very specifically to two completely distinct DNA sequence motifs.We propose an alternate specificity-determining mechanism whereby conformational rearrangements of the DBD broaden the spectrum of sequence motifs that a TF can recognize. DNA-binding bispecificity suggests a previously undescribed source of modularity and flexibility in gene regulation and may play an important role in the evolution of transcriptional regulatory networks.Organismic and Evolutionary Biolog
THE NATURAL HISTORY OF MODEL ORGANISMS Insights into the evolution of social systems and species from baboon studies
International audienceBaboons, members of the genus Papio, comprise six closely related species distributed throughout sub-Saharan Africa and southwest Arabia. The species exhibit more ecological flexibility and a wider range of social systems than many other primates. This article summarizes our current knowledge of the natural history of baboons and highlights directions for future research. We suggest that baboons can serve as a valuable model for complex evolutionary processes, such as speciation and hybridization. The evolution of baboons has been heavily shaped by climatic changes and population expansion and fragmentation in the African savanna environment, similar to the processes that acted during human evolution. With accumulating long-term data, and new data from previously understudied species, baboons are ideally suited for investigating the links between sociality, health, longevity and reproductive success. To achieve these aims, we propose a closer integration of studies at the proximate level, including functional genomics, with behavioral and ecological studies
Changing composition of SARS-CoV-2 lineages and rise of Delta variant in England.
BACKGROUND: Since its emergence in Autumn 2020, the SARS-CoV-2 Variant of Concern (VOC) B.1.1.7 (WHO label Alpha) rapidly became the dominant lineage across much of Europe. Simultaneously, several other VOCs were identified globally. Unlike B.1.1.7, some of these VOCs possess mutations thought to confer partial immune escape. Understanding when and how these additional VOCs pose a threat in settings where B.1.1.7 is currently dominant is vital. METHODS: We examine trends in the prevalence of non-B.1.1.7 lineages in London and other English regions using passive-case detection PCR data, cross-sectional community infection surveys, genomic surveillance, and wastewater monitoring. The study period spans from 31st January 2021 to 15th May 2021. FINDINGS: Across data sources, the percentage of non-B.1.1.7 variants has been increasing since late March 2021. This increase was initially driven by a variety of lineages with immune escape. From mid-April, B.1.617.2 (WHO label Delta) spread rapidly, becoming the dominant variant in England by late May. INTERPRETATION: The outcome of competition between variants depends on a wide range of factors such as intrinsic transmissibility, evasion of prior immunity, demographic specificities and interactions with non-pharmaceutical interventions. The presence and rise of non-B.1.1.7 variants in March likely was driven by importations and some community transmission. There was competition between non-B.1.17 variants which resulted in B.1.617.2 becoming dominant in April and May with considerable community transmission. Our results underscore that early detection of new variants requires a diverse array of data sources in community surveillance. Continued real-time information on the highly dynamic composition and trajectory of different SARS-CoV-2 lineages is essential to future control efforts. FUNDING: National Institute for Health Research, Medicines and Healthcare products Regulatory Agency, DeepMind, EPSRC, EA Funds programme, Open Philanthropy, Academy of Medical Sciences Bill,Melinda Gates Foundation, Imperial College Healthcare NHS Trust, The Novo Nordisk Foundation, MRC Centre for Global Infectious Disease Analysis, Community Jameel, Cancer Research UK, Imperial College COVID-19 Research Fund, Medical Research Council, Wellcome Sanger Institute.National Institute for Health Research, Medicines and Healthcare products Regulatory Agency, DeepMind, EPSRC, EA Funds programme, Open Philanthropy, Academy of Medical Sciences Bill,Melinda Gates Foundation, Imperial College Healthcare NHS Trust, The Novo Nordisk Foundation, MRC Centre for Global Infectious Disease Analysis, Community Jameel, Cancer Research UK, Imperial College COVID-19 Research Fund, Medical Research Council, Wellcome Sanger Institute
The ABCflux database : Arctic-boreal CO2 flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems
Past efforts to synthesize and quantify the magnitude and change in carbon dioxide (CO2) fluxes in terrestrial ecosystems across the rapidly warming Arctic-boreal zone (ABZ) have provided valuable information but were limited in their geographical and temporal coverage. Furthermore, these efforts have been based on data aggregated over varying time periods, often with only minimal site ancillary data, thus limiting their potential to be used in large-scale carbon budget assessments. To bridge these gaps, we developed a standardized monthly database of Arctic-boreal CO2 fluxes (ABCflux) that aggregates in situ measurements of terrestrial net ecosystem CO2 exchange and its derived partitioned component fluxes: gross primary productivity and ecosystem respiration. The data span from 1989 to 2020 with over 70 supporting variables that describe key site conditions (e.g., vegetation and disturbance type), micrometeorological and environmental measurements (e.g., air and soil temperatures), and flux measurement techniques. Here, we describe these variables, the spatial and temporal distribution of observations, the main strengths and limitations of the database, and the potential research opportunities it enables. In total, ABCflux includes 244 sites and 6309 monthly observations; 136 sites and 2217 monthly observations represent tundra, and 108 sites and 4092 observations represent the boreal biome. The database includes fluxes estimated with chamber (19 % of the monthly observations), snow diffusion (3 %) and eddy covariance (78 %) techniques. The largest number of observations were collected during the climatological summer (June-August; 32 %), and fewer observations were available for autumn (September-October; 25 %), winter (December-February; 18 %), and spring (March-May; 25 %). ABCflux can be used in a wide array of empirical, remote sensing and modeling studies to improve understanding of the regional and temporal variability in CO2 fluxes and to better estimate the terrestrial ABZ CO2 budget. ABCflux is openly and freely available online (Virkkala et al., 2021b, https://doi.org/10.3334/ORNLDAAC/1934).Peer reviewe
Recommended from our members
Decadal increases in carbon uptake offset by respiratory losses across northern permafrost ecosystems
Tundra and boreal ecosystems encompass the northern circumpolar permafrost region and are experiencing rapid environmental change with important implications for the global carbon (C) budget. We analysed multi-decadal time series containing 302 annual estimates of carbon dioxide (CO2) flux across 70 permafrost and non-permafrost ecosystems, and 672 estimates of summer CO2 flux across 181 ecosystems. We find an increase in the annual CO2 sink across non-permafrost ecosystems but not permafrost ecosystems, despite similar increases in summer uptake. Thus, recent non-growing-season CO2 losses have substantially impacted the CO2 balance of permafrost ecosystems. Furthermore, analysis of interannual variability reveals warmer summers amplify the C cycle (increase productivity and respiration) at putatively nitrogen-limited sites and at sites less reliant on summer precipitation for water use. Our findings suggest that water and nutrient availability will be important predictors of the C-cycle response of these ecosystems to future warming
Massive X-ray screening reveals two allosteric drug binding sites of SARS-CoV-2 main protease
The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous health problems and economical challenges for mankind. To date, no effective drug is available to directly treat the disease and prevent virus spreading. In a search for a drug against COVID-19, we have performed a massive X-ray crystallographic screen of repurposing drug libraries containing 5953 individual compounds against the SARS-CoV-2 main protease (Mpro), which is a potent drug target as it is essential for the virus replication. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds binding to Mpro. In subsequent cell-based viral reduction assays, one peptidomimetic and five non-peptidic compounds showed antiviral activity at non-toxic concentrations. Interestingly, two compounds bind outside the active site to the native dimer interface in close proximity to the S1 binding pocket. Another compound binds in a cleft between the catalytic and dimerization domain of Mpro. Neither binding site is related to the enzymatic active site and both represent attractive targets for drug development against SARS-CoV-2. This X-ray screening approach thus has the potential to help deliver an approved drug on an accelerated time-scale for this and future pandemics
Health, education, and social care provision after diagnosis of childhood visual disability
Aim: To investigate the health, education, and social care provision for children newly diagnosed with visual disability.Method: This was a national prospective study, the British Childhood Visual Impairment and Blindness Study 2 (BCVIS2), ascertaining new diagnoses of visual impairment or severe visual impairment and blindness (SVIBL), or equivalent vi-sion. Data collection was performed by managing clinicians up to 1-year follow-up, and included health and developmental needs, and health, education, and social care provision.Results: BCVIS2 identified 784 children newly diagnosed with visual impairment/SVIBL (313 with visual impairment, 471 with SVIBL). Most children had associated systemic disorders (559 [71%], 167 [54%] with visual impairment, and 392 [84%] with SVIBL). Care from multidisciplinary teams was provided for 549 children (70%). Two-thirds (515) had not received an Education, Health, and Care Plan (EHCP). Fewer children with visual impairment had seen a specialist teacher (SVIBL 35%, visual impairment 28%, χ2p < 0.001), or had an EHCP (11% vs 7%, χ2p < 0 . 01).Interpretation: Families need additional support from managing clinicians to access recommended complex interventions such as the use of multidisciplinary teams and educational support. This need is pressing, as the population of children with visual impairment/SVIBL is expected to grow in size and complexity.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited
X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease
The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput X-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (M^(pro)), which is essential for viral replication. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to M^(pro). In subsequent cell-based viral reduction assays, one peptidomimetic and six non-peptidic compounds showed antiviral activity at non-toxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2
- …