94 research outputs found
Predictors of loss to follow-up of tuberculosis cases under the DOTS programme in Namibia
Background In Namibia, one out of every 25 cases of tuberculosis (TB) is “lost to follow-up” (LTFU). This has impacted negatively on national efforts to end the disease by 2035. The aim of this study was to determine the trends and predictors of LTFU under the directly observed treatment short-course (DOTS) programme in Namibia. Methods The study involved a retrospective longitudinal analysis of a nationwide cohort of TB cases registered under the DOTS programme in Namibia from 2006 to 2015. The trends and predictors of LTFU among cases in the National Electronic TB Register of the National TB and Leprosy Program were respectively determined by interrupted time series and multivariate logistic regression analyses using R-Studio software. Results Out of 104 203 TB cases, 3775 (3.6%) were LTFU. A quarter (26%) of cases with poor outcomes were due to LTFU. The annual decline in cases of LTFU was significant between the first (2005–2010) and second (2010–2015) medium-term plan period for TB programme implementation (p=0.002). The independent predictors of LTFU were male sex (p=0.004), 15–24 years age group (p=0.03), provider of treatment (p<0.001), intensive phase (p=0.047) and living in border/transit regions (p<0.001). HIV co-infection and TB regimen were not significant predictors of LTFU. Conclusions There were declining trends in LTFU in Namibia. DOTS programmes should integrate socioeconomic interventions for young and middle-aged adult male TB cases to reduce LTFU
Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction
The liver plays a central role in the pharmacokinetics of the majority of drugs. Liver dysfunction may not only reduce the blood/plasma clearance of drugs eliminated by hepatic metabolism or biliary excretion, it can also affect plasma protein binding, which in turn could influence the processes of distribution and elimination. Portal-systemic shunting, which is common in advanced liver cirrhosis, may substantially decrease the presystemic elimination (i.e., first-pass effect) of high extraction drugs following their oral administration, thus leading to a significant increase in the extent of absorption. Chronic liver diseases are associated with variable and non-uniform reductions in drug-metabolizing activities. For example, the activity of the various CYP450 enzymes seems to be differentially affected in patients with cirrhosis. Glucuronidation is often considered to be affected to a lesser extent than CYP450-mediated reactions in mild to moderate cirrhosis but can also be substantially impaired in patients with advanced cirrhosis. Patients with advanced cirrhosis often have impaired renal function and dose adjustment may, therefore, also be necessary for drugs eliminated by renal exctretion. In addition, patients with liver cirrhosis are more sensitive to the central adverse effects of opioid analgesics and the renal adverse effects of NSAIDs. In contrast, a decreased therapeutic effect has been noted in cirrhotic patients with beta-adrenoceptor antagonists and certain diuretics. Unfortunately, there is no simple endogenous marker to predict hepatic function with respect to the elimination capacity of specific drugs. Several quantitative liver tests that measure the elimination of marker substrates such as galactose, sorbitol, antipyrine, caffeine, erythromycin, and midazolam, have been developed and evaluated, but no single test has gained widespread clinical use to adjust dosage regimens for drugs in patients with hepatic dysfunction. The semi-quantitative Child-Pugh score is frequently used to assess the severity of liver function impairment, but only offers the clinician rough guidance for dosage adjustment because it lacks the sensitivity to quantitate the specific ability of the liver to metabolize individual drugs. The recommendations of the Food and Drug Administration (FDA) and the European Medicines Evaluation Agency (EMEA) to study the effect of liver disease on the pharmacokinetics of drugs under development is clearly aimed at generating, if possible, specific dosage recommendations for patients with hepatic dysfunction. However, the limitations of the Child-Pugh score are acknowledged, and further research is needed to develop more sensitive liver function tests to guide drug dosage adjustment in patients with hepatic dysfunction
Pharmacokinetic drug interactions with nonsteroidal anti-inflammatory drugs.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most widely used drugs. Drug interactions with this class of compounds are frequently reported and can be pharmacokinetic and/or pharmacodynamic in nature. The pharmacokinetic interactions can be divided into 3 classes: (1) drugs affecting the pharmacokinetics of an NSAID. (2) an NSAID interfering with the pharmacokinetics of another NSAID and (3) NSAIDs altering the pharmacokinetics of another drug. Although the pharmacokinetics of some NSAIDs may be significantly affected by the concurrent administration of certain other drugs (including other NSAIDs), this type of interaction only occasionally leads to serious complications. Concurrent administration of antacids or sucralfate may delay the rate of oral absorption of NSAIDs but generally has little effect on the extent. Use of antacids increases urinary pH, leading to increased renal excretion of unchanged salicylic acid and decreased plasma concentrations of this antirheumatic agent. The H2-receptor blocking agent cimetidine inhibits the oxidative metabolism of many concurrently administered drugs, including certain NSAIDs. Probenecid inhibits the renal secretion of drug glucuronides and this will lead to accumulation in plasma of those NSAIDs eliminated primarily by the formation of labile acyl glucuronides such as naproxen, ketoprofen, indomethacin, carprofen. Cholestyramine decreases the oral absorption of many concurrently administered drugs, including NSAIDs. It may also decrease plasma concentrations of those NSAIDs undergoing enterohepatic circulation (e.g. piroxicam, tenoxicam) by interrupting the enterohepatic cycle. Corticosteroids stimulate the clearance of salicylic acid, leading to low plasma salicylate concentrations. Plasma concentrations of many NSAIDs are significantly reduced when the NSAID is coadministered with aspirin. The clinical relevance of most of these interactions is not well established. However, in those cases where the interaction results in elevated plasma concentrations of the NSAID, special caution should be exercised to avoid excessive accumulation of the NSAID especially in elderly and/or very sick patients who may be more sensitive to the more serious gastroduodenal and renal side-effects of these agents. By virtue of their pharmacokinetic and pharmacodynamic properties, NSAIDs may significantly affect the disposition kinetics of a number of other drugs. They can displace other drugs from their plasma protein binding sites, inhibit their metabolism or interfere with their renal excretion. If the affected drug has a narrow therapeutic index, the interaction may be clinically significant. The pyrazole NSAIDs (phenylbutazone, oxyphenbutazone, azapropazone) inhibit the metabolism of many drugs such as the coumarin anticoagulants, oral antidiabetics and anticonvulsants such as phenytoin. Salicylates displace oral anticoagulants from their plasma protein binding sites.(ABSTRACT TRUNCATED AT 400 WORDS
Blood microdialysis in pharmacokinetic and drug metabolism studies.
Microdialysis is a sampling technique allowing measurement of endogenous and exogenous substances in the extracellular fluid surrounding the probe. In vivo microdialysis sampling offers several advantages over conventional methods of studying the pharmacokinetics and metabolism of xenobiotics, both in experimental animals and humans. In the first part of this review article various practical aspects related to blood microdialysis will be discussed, such as: probe design, surgical implantation techniques, methods to determine the in vivo relative recovery of the analyte of interest by the probe, special analytical considerations related to small volume microdialysate samples, and pharmacokinetic calculations based on microdialysis data. In the second part of this review a few selected applications of in vivo microdialysis sampling to investigate pharmacokinetic processes are briefly discussed: determination of in vivo plasma protein binding in small laboratory animals, distribution of drugs across the blood-brain barrier, the use of microdialysis sampling to study biliary excretion and enterohepatic cycling, blood microdialysis sampling in man and in the mouse, and in vivo drug metabolism studies
The European Union
The generic drug product market is projected to grow from US 27 billion in 2009 in the United States, and from US 14 billion in Western Europe (1). Moreover, the growth opportunities for generic drug products in the near future are significant with an estimated US $100 billion worth of branded pharmaceutical products to go off patent by 2010 (1). The substantial growth of the world generics drug market has been driven by a number of factors, but in particular the need to contain public health care spending, including the expenditure on drug products. In response to the important growth of the generic pharmaceutical industry during the last 10 to 15 years, regulatory agencies in countries all over the world, such as the Food and Drug Administration (FDA) in the United States, Canada's Health Products and Food Branch (HPFB), and the European Medicines Agency (EMEA) in the European Union (EU), have established requirements which must be met by a generic drug product to receive marketing authorization (2,3)
Read More: http://informahealthcare.com/doi/abs/10.3109/9781420020021.00
Comparative clinical pharmacokinetics of tacrolimus in paediatric and adult patients.
Tacrolimus is a potent immunosuppressive agent used to prevent allograft rejection. The pharmacokinetics of tacrolimus have been studied in healthy volunteers and transplant recipients, mostly by using immunoassays to measure tacrolimus in plasma or blood. However, because of the cross-reactivity for certain tacrolimus metabolites of the antibodies used, these methods often lack specificity. This should be carefully taken into account when interpreting pharmacokinetic results for tacrolimus. In adult patients, tacrolimus is generally rapidly absorbed following oral administration (the time to reach maximum concentration is 1 to 2 hours), but in some patients absorption is slow or even delayed. Because of presystemic elimination, the oral bioavailability is low (around 20%) but may vary between 4 and 89%. Tacrolimus is highly bound to erythrocytes. Its binding to plasma proteins varies between 72 and 98% depending on the methodology used. Because of the extensive partitioning of tacrolimus into erythrocytes, its apparent volume of distribution (Vd) based on blood concentrations is much lower (1.0 to 1.5 L/kg) compared with values based on plasma concentrations (about 30 L/kg). Tacrolimus is metabolised by cytochrome P450 (CYP) 3A4 to at least 10 metabolites, some of which retain significant activity. Biliary excretion is the route of elimination of the tacrolimus metabolites. Systemic plasma clearance of tacrolimus is very high (0.6 to 5.4 L/h/kg), whereas blood clearance is much lower (0.03 to 0.09 L/h/kg). The terminal elimination half-life (t1/2beta) of tacrolimus is approximately 12 hours (with a range of 3.5 to 40.5 hours). Only limited information is available on the pharmacokinetics of tacrolimus in paediatric patients. The rate and extent of tacrolimus absorption after oral administration do not seem to be altered in paediatric patients. The Vd of tacrolimus based on blood concentrations in paediatric patients (2.6 L/kg) is approximately twice the adult value. Blood clearance of tacrolimus is also approximately twice as high in paediatric (0.14 L/h/kg) compared with adult (0.06 L/h/kg) patients. Consequently, t1/2beta does not appear modified in children, but oral doses need to be generally 2-fold higher than corresponding adult doses to reach similar tacrolimus blood concentrations. More pharmacokinetic studies in paediatric patients are, however, needed to rationalise the use of therapeutic drug monitoring for optimisation of tacrolimus therapy in this patient population
Glucuronidation of diflunisal by rat liver microsomes. Effect of microsomal beta-glucuronidase activity.
The in vitro formation rates of the phenolic (DPG) and acyl (DAG) glucuronides of diflunisal were investigated using rat liver microsomes. Preliminary studies showed that DAG hydrolysed rapidly (T1/2 = 12 min) when incubated in the presence of rat liver microsomes at pH 7.4 and 37 degrees. DPG was much more stable under the same conditions (T1/2 = 35 hr). Hydrolysis of DAG and DPG by rat liver microsomes was inhibited by 4 mM saccharolactone, a beta-glucuronidase inhibitor. The apparent Km and Vmax values for the formation of DAG in the absence and presence of 4 mM D-saccharic acid-1,4-lactone (saccharolactone) were the following: Km = 0.05 +/- 0.02 vs 0.08 +/- 0.02 mM and Vmax = 0.20 +/- 0.06 vs 0.43 +/- 0.07 nmol/min/mg protein (0 and 4 mM saccharolactone, respectively). The significant increase in apparent Vmax for DAG formation in the presence of saccharolactone can be explained by the inhibition of beta-glucuronidase-catalysed hydrolysis of DAG. Apparent Km and Vmax values for the formation rate of DPG were not affected by addition of saccharolactone to the incubation medium. These results indicate that beta-glucuronidase-catalysed hydrolysis of certain glucuronides formed during microsomal incubations may significantly affect the apparent glucuronidation rate due to the presence of a glucuronidation-deglucuronidation cycle
- …