5 research outputs found
Instabilities of one-dimensional stationary solutions of the cubic nonlinear Schrodinger equation
The two-dimensional cubic nonlinear Schrodinger equation admits a large
family of one-dimensional bounded traveling-wave solutions. All such solutions
may be written in terms of an amplitude and a phase. Solutions with piecewise
constant phase have been well studied previously. Some of these solutions were
found to be stable with respect to one-dimensional perturbations. No such
solutions are stable with respect to two-dimensional perturbations. Here we
consider stability of the larger class of solutions whose phase is dependent on
the spatial dimension of the one-dimensional wave form. We study the spectral
stability of such nontrivial-phase solutions numerically, using Hill's method.
We present evidence which suggests that all such nontrivial-phase solutions are
unstable with respect to both one- and two-dimensional perturbations.
Instability occurs in all cases: for both the elliptic and hyperbolic nonlinear
Schrodinger equations, and in the focusing and defocusing case.Comment: Submitted: 13 pages, 3 figure
Cauchy-Kowalevski and polynomial ordinary differential equations
The Cauchy-Kowalevski Theorem is the foremost result guaranteeing existence and uniqueness of local solutions for analytic quasilinear partial differential equations with Cauchy initial data. The techniques of Cauchy-Kowalevski may also be applied to initial-value ordinary differential equations. These techniques, when applied in the polynomial ordinary differential equation setting, lead one naturally to a method in which coefficients of the series solution are easily computed in a recursive manner, and an explicit majorization admits a clear a priori error bound. The error bound depends only on immediately observable quantities of the polynomial system; coefficients, initial conditions, and polynomial degree. The numerous benefits of the polynomial system are shown for a specific example
In situ measures of methanotroph activity in upland soils: A reaction‐diffusion model and field observation of water stress
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96406/1/jgrg418.pd