109 research outputs found

    Occurence of legacy and emerging persistent organic pollutants at the Ross Sea and circumpolar deep water convergence (Antarctica)

    Get PDF
    Persistent organic pollutants (POPs) have attracted the attention of scientists and policy makers in recent decades due to their extreme persistence, semi-volatility, capacity to bio-accumulate in the food chain, and toxic properties. Despite its geographical isolation, extreme meteorological conditions and an almost total absence of local point sources, the Antarctic continent is vulnerable to contamination by POPs, due to the ability of these chemicals to undergo long range atmospheric transport (LRAT) and deposition in the open sea. In a few cases and for limited areas, POPs may be also introduced into the Antarctic ecosystem by human activities (scientific stations, fishing, tourism, accidental oil pills, waste incineration and sewage). Even if various studiesi.e.1,2,3,4,5 have revealed the presence of POPs in air, seawater, sediments and biota in Antarctica, more investigations are needed to implement the number of observations, integrate the data series and meet the indications of the Stockholm Convention and the UNECE protocol in terms of improving knowledge of the temporal and spatial trends of POPs in biotic and abiotic environmental compartments. In this study we present POP concentrations in water samples collected along vertical water columns from seven oceanographic stations located in the Ross Sea and close to the Circumpolar Convergence (see Figure 1). Moreover, the occurrence of emerging and legacy POPs, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated naphthalenes (PCNs), organochlorine pesticides (OCPs) and polybrominated diphenylethers (PBDEs) were investigated in order to evaluate their possible sources and relationship with physical and biological processes taking place in the water column. The Ross sea is the formation site of two shelf waters which constitute an important part of the Antarctic Bottom Water (AABWs): the High Salinity Shelf Water (HSSW), which is relatively cold and generated inside the Ross Sea basin and the Ice Shelf Water (ISW). The Ross sea is influenced by only one water mass of external origin, the Circumpolar Deep Water (CDW), which is the largest circulation feature of the Southern Ocean, manly responsible for possible exchange processes between the Antarctic seas and the outer oceans, and thus a possible source of persistent organic pollutants (POPs)2 . The CDW is a relatively warm, salty and nutrient rich water mass carried around Antarctica by the Antarctic Circumpolar Current (ACC)6. Associated with the ACC is the Antarctic Convergence where the cold Antarctic waters meet the warmer waters of the subantarctic creating a zone of upwelling nutrients. Moreover, the Drygalski Glacie Tongue plays an important role in the Polynya development in the Terra Nova Bay, in the Ross sea. An important environmental concern is the accelerated glacier and snow melting that represent a massive release of both naturally occurring chemical substances and organic/inorganic pollutants of anthropogenic origin, which are stored in the deeper layers of the ice and may be delivered to surrounding ecosystems

    The Removal of β2-Microglobulin in Spent Dialysate Cannot Be Monitored by Spectrophotometric Analysis

    Get PDF
    We synthetically present here unpublished results on β2M removal during HD treatments with dialysis membranes having different flux and adsorption capacities to clarify if the spectrophotometric analysis of spent dialysate may allow the possibility to monitor the removal of β2M during HD. These results were obtained from the analyses of serum and spent dialysate samples of the 22 MHD patients (16 men, 6 women). Serum and spent dialysate concentrations of β2M were measured with an immunonephelometric method (Siemens, BNAII) and compared with absorbance and fluorescence values. We conclude that the removal of β2M cannot be evaluated by spectrophotometric analysis of spent dialysate

    Influence of sampling on the determination of warfarin and warfarin alcohols in oral fluid

    Get PDF
    Background and Objective: The determination of warfarin, RS/SR- and RR/SSwarfarin alcohols in oral fluid may offer additional information to the INR assay. This study aimed to establish an optimized sampling technique providing the best correlation between the oral fluid and the unbound plasma concentrations of these compounds. Materials and Methods: Samples of non-stimulated and stimulated oral fluid, and blood were collected from 14 patients undergoing warfarin therapy. After acidification, analytes were extracted with a dichloromethane/hexane mixture and determined by HPLC with fluorescence detection. Plasma samples were also ultrafiltered for the determination of the unbound fraction. The chromatographic separation was carried out in isocratic conditions with a phosphate buffer/methanol mobile phase on a C-18 reversed-phase column. The absence of interfering compounds was verified by HPLC-ESI-Q-TOF. Results: Stimulation generally increased the oral fluid pH to values close to blood pH in about 6 minutes. The concentration of warfarin and RS/SR-warfarin alcohols in oral fluid followed the same trend, whereas the concentration of RR/SS-warfarin alcohols was not affected. Six minute stimulation with chewing gum followed by collection with a polyester swab was the best sampling procedure, with a good repeatability (RSD 〈10%) and relatively low inter-subject variability (RSD =30%) of the oral fluid to plasma ratio. This procedure provided strong correlations between the measured oral fluid and unbound plasma concentration of warfarin (r = 0.92, p 〈0.001) and RS/SR-warfarin alcohols (r =5 0.84, p 〈0.001), as well as between stimulated oral fluid and total plasma concentration of warfarin (r = 0.78, p 〈0.001) and RS/SR-warfarin alcohols (r = 0.81, p 〈0.001). Conclusion: The very good correlation between oral fluid and unbound plasma concentration of warfarin and RS/SR-warfarin alcohols suggests that oral fluid analysis could provide clinically useful information for the monitoring of anticoagulant therapy, complentary to the INR assay

    Plastic breeze: Volatile organic compounds (VOCs) emitted by degrading macro- and microplastics analyzed by selected ion flow-tube mass spectrometry

    Get PDF
    Pollution from microplastics (MPs) has become one of the most relevant topics in environmental chemistry. The risks related to MPs include their capability to adsorb toxic and harmful molecular species, and to release additives and degradation products into ecosystems. Their role as a primary source of a broad range of harmful volatile organic compounds (VOCs) has also been recently reported.In this work, we applied a non-destructive approach based on selected-ion flow tube mass spectrometry (SIFT-MS) for the characterization of VOCs released from a set of plastic debris collected from a sandy beach in northern Tuscany.The interpretation of the individual SIFT-MS spectra, aided by principal component data analysis, allowed us to relate the aged polymeric materials that make up the plastic debris (polyethylene, polypropylene, and polyethylene terephthalate) to their VOC emission profile, degradation level, and sampling site. The study proves the potential of SIFT-MS application in the field, as a major advance to obtain fast and reliable information on the VOCs emitted from microplastics. The possibility to obtain qualitative and quantitative data on plastic debris in less than 2 min also makes SIFT-MS a useful and innovative tool for future monitoring campaigns involving statistically significant sets of environmental samples

    Determination of sevoflurane and isopropyl alcohol in exhaled breath by thermal desorption gas chromatography-mass spectrometry for exposure assessment of hospital staff

    Get PDF
    Volatile anaesthetics and disinfection chemicals pose ubiquitous inhalation and dermal exposure risks in hospital and clinic environments. This work demonstrates specific non-invasive breath biomonitoring methodology for assessing staff exposures to sevoflurane (SEV) anaesthetic, documenting its metabolite hexafluoroisopropanol (HFIP) and measuring exposures to isopropanol (IPA) dermal disinfection fluid. Methods are based on breath sample collection in Nalophan bags, followed by an aliquot transfer to adsorption tube, and subsequent analysis by thermal desorption gas chromatography-mass spectrometry (TD-GC-MS). Ambient levels of IPA were also monitored. These methods could be generalized to other common volatile chemicals found in medical environments. Calibration curves were linear (r2=0.999) in the investigated ranges: 0.01-1000ppbv for SEV, 0.02-1700ppbv for IPA, and 0.001-0.1ppbv for HFIP. The instrumental detection limit was 10pptv for IPA and 5pptv for SEV, both estimated by extracted ion-TIC chromatograms, whereas the HFIP minimum detectable concentration was 0.5pptv as estimated in SIM acquisition mode. The methods were applied to hospital staff working in operating rooms and clinics for blood draws. SEV and HFIP were present in all subjects at concentrations in the range of 0.7-18, and 0.002-0.024ppbv for SEV and HFIP respectively. Correlation between IPA ambient air and breath concentration confirmed the inhalation pathway of exposure (r=0.95, p<0.001) and breath-borne IPA was measured as high as 1500ppbv. The methodology is easy to implement and valuable for screening exposures to common hospital chemicals. Although the overall exposures documented were generally below levels of health concern in this limited study, outliers were observed that indicate potential for acute exposures

    Comparison of sampling bags for the analysis of volatile organic compounds in breath

    Get PDF
    Nalophan, Tedlar and Cali-5-Bond polymeric bags were compared to determine the most suitable type for breath sampling and storage when volatile organic compounds are to be determined. Analyses were performed by thermal desorption gas chromatography mass spectrometry. For each bag, the release of contaminants and the chemical stability of a gaseous standard mixture containing eighteen organic compounds, as well as the CO2 partial pressure were assessed. The selected compounds were representative of breath constituents and belonged to different chemical classes (i.e. hydrocarbons, ketones, aldehydes, aromatics, sulfurs and esters). In the case of Nalophan, the influence of the surface-to-volume ratio, related to the bag's filling degree, on the chemical stability was also evaluated. Nalophan bags were found to be the most suitable in terms of contaminants released during storage (only 2-methyl-1,3-dioxalane), good sample stability (up to 24 h for both dry and humid samples), and very limited costs (about 1 for a 20 liter bag). The (film) surface-to-(sample) volume ratio was found to be an important factor affecting the stability of selected compounds, and therefore we recommended to fill the bag completely

    Determination of volatile organic compounds in exhaled breath of heart failure patients by needle trap micro-extraction coupled with gas chromatography-tandem mass spectrometry

    Get PDF
    The analytical performances of needle trap micro-extraction (NTME) coupled with gas chromatography tandem mass spectrometry were evaluated by analyzing a mixture of twenty-two representative breath VOCs belonging to different chemical classes (i.e. hydrocarbons, ketones, aldehydes, aromatics and sulfurs). NTME is an emerging technique that guarantees detection limits in pptv range by pre-concentrating low volumes of sample, and it is particularly suitable for breath analysis. For most VOCs, detection limits between 20 and 500 pptv were obtained by pre-concentrating 25 mL of a humidified standard gas mixture at a flow rate of 15 mL/min. For all compounds, inter- and intra-day precisions were always below 15%, confirming the reliability of the method. The procedure was successfully applied to the analysis of exhaled breath samples collected from forty heart failure patients during their stay in the University Hospital of Pisa. The majority of patients (about 80%) showed a significant decrease of breath acetone levels (a factor of 3 or higher) at discharge compared to admission (acute phase) in correspondence to the improved clinical conditions during hospitalization, thus making this compound eligible as a biomarker of heart failure exacerbation

    Measurement of Warfarin in the Oral Fluid of Patients Undergoing Anticoagulant Oral Therapy

    Get PDF
    BACKGROUND: Patients on warfarin therapy undergo invasive and expensive checks for the coagulability of their blood. No information on coagulation levels is currently available between two controls. METHODOLOGY: A method was developed to determine warfarin in oral fluid by HPLC and fluorimetric detection. The chromatographic separation was performed at room temperature on a C-18 reversed-phase column, 65% PBS and 35% methanol mobile phase, flow rate 0.7 mL/min, injection volume 25 µL, excitation wavelength 310 nm, emission wavelength 400 nm. FINDINGS: The method was free from interference and matrix effect, linear in the range 0.2-100 ng/mL, with a detection limit of 0.2 ng/mL. Its coefficient of variation was <3% for intra-day measurements and <5% for inter-day measurements. The average concentration of warfarin in the oral fluid of 50 patients was 2.5±1.6 ng/mL (range 0.8-7.6 ng/mL). Dosage was not correlated to INR (r = -0.03, p = 0.85) but positively correlated to warfarin concentration in the oral fluid (r = 0.39, p = 0.006). The correlation between warfarin concentration and pH in the oral fluid (r = 0.37, p = 0.009) confirmed the importance of pH in regulating the drug transfer from blood. A correlation between warfarin concentration in the oral fluid and INR was only found in samples with pH values ≥7.2 (r = 0.84, p = 0.004). CONCLUSIONS: Warfarin diffuses from blood to oral fluid. The method allows to measure its concentration in this matrix and to analyze correlations with INR and other parameters
    • …
    corecore