7 research outputs found

    Double anomalies: Brugada syndrome presenting with a persistent left superior vena cava

    No full text
    Objective: Rare co-existance of disease or pathology Background: The presentation of Brugada syndrome (BrS) with a persistent left superior vena cava (PLSVC) is expected to be a rare entity. It is unknown if this venous anomaly is linked to the arrhythmogenesis seen in BrS, or it is coincidental. This case describes a clinical presentation of the 2, in tandem, and displays the anomaly in association with BrS. Case Report: A 54-year-old female presented to the Emergency Department with non-prodromal syncope. This was on a background of a number of similar episodes in the past, and a current suspected viral illness comprising fever and diarrhea. Her resting electrocardiogram was suggestive of BrS. The later was confirmed with an ajmaline provocation test after ECG normalization in the subsequent 24 hours post admission. Pre-intracardiac defibrillator (ICD) procedure imaging displayed the PLSVC. An ICD was implanted, and the advancement of the guidewires displayed the venous anomaly. Post-procedure echocardiography confirmed appropriate positioning of the leads. The patient recovered well and is currently symptom free. Conclusions: PLSVC presenting with BrS is a rare occurrence. It is unknown whether or not the PLSVC and BrS are linked in their presentation, or merely a coincidence</p

    Biomedical studies on temporal bones of the first multi-channel cochlear implant patient at the University of Melbourne

    No full text
    Objective: To analyse the temporal bones and implant of the first University of Melbourne’s (UOM) patient (MC-1) to receive the multi-channel cochlear prosthesis.Methods: The left cochlea was implanted with the prototype multi-channel cochlear prosthesis on 1 August 1978, and the Cochlear versions CI-22 and CI-24 on 22 June 1983 and 10 November 1998, respectively. MC-1 died in 2007.Results: Plain X-rays of the temporal bones showed that after the CI-22 had been explanted seven electrode bands remained in situ. Micro-CT scans also revealed a partially united fracture transecting the left implanted and right control cochleae. Histology indicated a total loss of the organ of Corti on both sides, and a tear of the left basilar membrane. In addition, there was a dense fibrous capsule with heterotopic bone surrounding one proximal band of the CI-22 array that restricted its removal. This pathology was associated with dark particulate material within macrophages, probably due to the release of platinum from the electrode bands. Scanning electron microscopy (SEM) showed possible corrosion of platinum and surface roughening. Three-dimensional reconstruction of the cochlear histology demonstrated the position of the electrode tracts (C1-22 and CI-24) in relation to the spiral ganglion, which showed 85–90% loss of ganglion cells.Discussion and conclusions: This study confirms our first histopathological findings that our first free-fitting banded electrode array produced moderate trauma to the cochlea when inserted around the scala tympani of the basal turn. The difficulty in extraction was most likely due to one band being surrounded by an unusually large amount of fibrous tissue and bone, with an electrode band caught due to surface irregularities. Some surface corrosion and a small degree of platinum deposition in the tissue may also help explain the outcome for this long-term cochlear implantation.</p

    Antifungal versus antibacterial defence of insect wings

    No full text
    HYPOTHESIS: The ability exhibited by insect wings to resist microbial infestation is a unique feature developed over 400 million years of evolution in response to lifestyle and environmental pressures. The self-cleaning and antimicrobial properties of insect wings may be attributed to the unique combination of nanoscale structures found on the wing surface. EXPERIMENTS: In this study, we characterised the wetting characteristics of superhydrophobic damselfly Calopteryx haemorrhoidalis wings. We revealed the details of air entrapment at the micro- and nano scales on damselfly wing surfaces using a combination of spectroscopic and electron microscopic techniques. Cryo-focused-ion-beam scanning electron microscopy was used to directly observe fungal spores and conidia that were unable to cross the air-liquid interface. By contrast, bacterial cells were able to cross the air-water interface to be ruptured upon attachment to the nanopillar surface. The robustness of the air entrapment, and thus the wing antifungal behaviour, was demonstrated after 1-week of water immersion. A newly developed wetting model confirmed the strict Cassie-Baxter wetting regime when damselfly wings are immersed in water. FINDINGS: We provide evidence that the surface nanopillar topography serves to resist both fungal and bacterial attachment via a dual action: repulsion of fungal conidia while simultaneously killing bacterial cells upon direct contact. These findings will play an important role in guiding the fabrication of biomimetic, anti-fouling surfaces that exhibit both bactericidal and anti-fungal properties

    Antifungal versus antibacterial defence of insect wings

    Get PDF
    HYPOTHESIS: The ability exhibited by insect wings to resist microbial infestation is a unique feature developed over 400 million years of evolution in response to lifestyle and environmental pressures. The self-cleaning and antimicrobial properties of insect wings may be attributed to the unique combination of nanoscale structures found on the wing surface. EXPERIMENTS: In this study, we characterised the wetting characteristics of superhydrophobic damselfly Calopteryx haemorrhoidalis wings. We revealed the details of air entrapment at the micro- and nano scales on damselfly wing surfaces using a combination of spectroscopic and electron microscopic techniques. Cryo-focused-ion-beam scanning electron microscopy was used to directly observe fungal spores and conidia that were unable to cross the air-liquid interface. By contrast, bacterial cells were able to cross the air-water interface to be ruptured upon attachment to the nanopillar surface. The robustness of the air entrapment, and thus the wing antifungal behaviour, was demonstrated after 1-week of water immersion. A newly developed wetting model confirmed the strict Cassie-Baxter wetting regime when damselfly wings are immersed in water. FINDINGS: We provide evidence that the surface nanopillar topography serves to resist both fungal and bacterial attachment via a dual action: repulsion of fungal conidia while simultaneously killing bacterial cells upon direct contact. These findings will play an important role in guiding the fabrication of biomimetic, anti-fouling surfaces that exhibit both bactericidal and anti-fungal properties

    Biomedical studies on temporal bones of the first multi-channel cochlear implant patient at the University of Melbourne

    No full text
    Objective: To analyse the temporal bones and implant of the first University of Melbourne’s (UOM) patient (MC-1) to receive the multi-channel cochlear prosthesis.Methods: The left cochlea was implanted with the prototype multi-channel cochlear prosthesis on 1 August 1978, and the Cochlear versions CI-22 and CI-24 on 22 June 1983 and 10 November 1998, respectively. MC-1 died in 2007.Results: Plain X-rays of the temporal bones showed that after the CI-22 had been explanted seven electrode bands remained in situ. Micro-CT scans also revealed a partially united fracture transecting the left implanted and right control cochleae. Histology indicated a total loss of the organ of Corti on both sides, and a tear of the left basilar membrane. In addition, there was a dense fibrous capsule with heterotopic bone surrounding one proximal band of the CI-22 array that restricted its removal. This pathology was associated with dark particulate material within macrophages, probably due to the release of platinum from the electrode bands. Scanning electron microscopy (SEM) showed possible corrosion of platinum and surface roughening. Three-dimensional reconstruction of the cochlear histology demonstrated the position of the electrode tracts (C1-22 and CI-24) in relation to the spiral ganglion, which showed 85–90% loss of ganglion cells.Discussion and conclusions: This study confirms our first histopathological findings that our first free-fitting banded electrode array produced moderate trauma to the cochlea when inserted around the scala tympani of the basal turn. The difficulty in extraction was most likely due to one band being surrounded by an unusually large amount of fibrous tissue and bone, with an electrode band caught due to surface irregularities. Some surface corrosion and a small degree of platinum deposition in the tissue may also help explain the outcome for this long-term cochlear implantation.</p
    corecore