369 research outputs found

    Enhancing superconductivity: Magnetic impurities and their quenching by magnetic fields

    Full text link
    Magnetic fields and magnetic impurities are each known to suppress superconductivity. However, as the field quenches (i.e. polarizes) the impurities, rich consequences, including field-enhanced superconductivity, can emerge when both effects are present. For the case of superconducting wires and thin films, this field-spin interplay is investigated via the Eilenberger-Usadel scheme. Non-monotonic dependence of the critical current on the field (and therefore field-enhanced superconductivity) is found to be possible, even in parameter regimes in which the critical temperature decreases monotonically with increasing field. The present work complements that of Kharitonov and Feigel'man, which predicts non-monotonic behavior of the critical temperature.Comment: 8 pages, 2 figures, EPL forma

    Structure of 10N in 9C+p resonance scattering

    Full text link
    The structure of exotic nucleus 10N was studied using 9C+p resonance scattering. Two L=0 resonances were found to be the lowest states in 10N. The ground state of 10N is unbound with respect to proton decay by 2.2(2) or 1.9(2) MeV depending on the 2- or 1- spin-parity assignment, and the first excited state is unbound by 2.8(2) MeV.Comment: 6 pages, 4 figures, 1 table, submitted to Phys. Lett.

    Structure of 8B from elastic and inelastic 7Be+p scattering

    Get PDF
    Motivation: Detailed experimental knowledge of the level structure of light weakly bound nuclei is necessary to guide the development of new theoretical approaches that combine nuclear structure with reaction dynamics. Purpose: The resonant structure of 8B is studied in this work. Method: Excitation functions for elastic and inelastic 7Be+p scattering were measured using a 7Be rare isotope beam. Excitation energies ranging between 1.6 and 3.4 MeV were investigated. An R-matrix analysis of the excitation functions was performed. Results: New low-lying resonances at 1.9, 2.5, and 3.3 MeV in 8B are reported with spin-parity assignment 0+, 2+, and 1+, respectively. Comparison to the Time Dependent Continuum Shell (TDCSM) model and ab initio no-core shell model/resonating-group method (NCSM/RGM) calculations is performed. This work is a more detailed analysis of the data first published as a Rapid Communication. [J.P. Mitchell, et al, Phys. Rev. C 82, 011601(R) (2010)] Conclusions: Identification of the 0+, 2+, 1+ states that were predicted by some models at relatively low energy but never observed experimentally is an important step toward understanding the structure of 8B. Their identification was aided by having both elastic and inelastic scattering data. Direct comparison of the cross sections and phase shifts predicted by the TDCSM and ab initio No Core Shell Model coupled with the resonating group method is of particular interest and provides a good test for these theoretical approaches.Comment: 15 pages, 19 figures, 3 tables, submitted to PR

    Nuclear structure beyond the neutron drip line: the lowest energy states in 9^9He via their T=5/2 isobaric analogs in 9^9Li

    Get PDF
    The level structure of the very neutron rich and unbound 9^9He nucleus has been the subject of significant experimental and theoretical study. Many recent works have claimed that the two lowest energy 9^9He states exist with spins Jπ=1/2+J^\pi=1/2^+ and Jπ=1/2−J^\pi=1/2^- and widths on the order of hundreds of keV. These findings cannot be reconciled with our contemporary understanding of nuclear structure. The present work is the first high-resolution study with low statistical uncertainty of the relevant excitation energy range in the 8^8He+n+n system, performed via a search for the T=5/2 isobaric analog states in 9^9Li populated through 8^8He+p elastic scattering. The present data show no indication of any narrow structures. Instead, we find evidence for a broad Jπ=1/2+J^{\pi}=1/2^+ state in 9^9He located approximately 3 MeV above the neutron decay threshold

    Magnetic field enhancement of superconductivity in ultra-narrow wires

    Full text link
    We study the effect of an applied magnetic field on sub-10nm wide MoGe and Nb superconducting wires. We find that magnetic fields can enhance the critical supercurrent at low temperatures, and does so more strongly for narrower wires. We conjecture that magnetic moments are present, but their pair-breaking effect, active at lower magnetic fields, is suppressed by higher fields. The corresponding microscopic theory, which we have developed, quantitatively explains all experimental observations, and suggests that magnetic moments have formed on the wire surfaces.Comment: 4 pages, 3 figures, 1 tabl

    Low-lying states in 8B

    Get PDF
    Excitation functions of elastic and inelastic 7Be+p scattering were measured in the energy range between 1.6 and 2.8 MeV in the c.m. An R-matrix analysis of the excitation functions provides strong evidence for new positive parity states in 8B. A new 2+ state at an excitation energy of 2.55 MeV was observed and a new 0+ state at 1.9 MeV is tentatively suggested. The R-matrix and Time Dependent Continuum Shell Model were used in the analysis of the excitation functions. The new results are compared to the calculations of contemporary theoretical models.Comment: 6 pages, 5 figures, accepted as Rapid Communication in Phys. Rev.
    • …
    corecore