14 research outputs found

    A fiber-modified adenoviral vector interacts with immunoevasion molecules of the B7 family at the surface of murine leukemia cells derived from dormant tumors

    Get PDF
    Tumor cells can escape the immune system by overexpressing molecules of the B7 family, e.g. B7-H1 (PD-L1 or CD86), which suppresses the anti-tumor T-cell responses through binding to the PD-1 receptor, and similarly for B7.1 (CD80), through binding to CTLA-4. Moreover, direct interactions between B7-H1 and B7.1 molecules are also likely to participate in the immunoevasion mechanism. In this study, we used a mouse model of tumor dormancy, DA1-3b leukemia cells. We previously showed that a minor population of DA1-3b cells persists in equilibrium with the immune system for long periods of time, and that the levels of surface expression of B7-H1 and B7.1 molecules correlates with the dormancy time. We found that leukemia cells DA1-3b/d365 cells, which derived from long-term dormant tumors and overexpressed B7-H1 and B7.1 molecules, were highly permissive to Ad5FB4, a human adenovirus serotype 5 (Ad5) vector pseudotyped with chimeric human-bovine fibers. Both B7-H1 and B7.1 were required for Ad5FB4-cell binding and entry, since (i) siRNA silencing of one or the other B7 gene transcript resulted in a net decrease in the cell binding and Ad5FB4-mediated transduction of DA1-3b/d365; and (ii) plasmid-directed expression of B7.1 and B7-H1 proteins conferred to Ad5FB4-refractory human cells a full permissiveness to this vector. Binding data and flow cytometry analysis suggested that B7.1 and B7-H1 molecules played different roles in Ad5FB4-mediated transduction of DA1-3b/d365, with B7.1 involved in cell attachment of Ad5FB4, and B7-H1 in Ad5FB4 internalization. BRET analysis showed that B7.1 and B7-H1 formed heterodimeric complexes at the cell surface, and that Ad5FB4 penton, the viral capsomere carrying the fiber projection, could negatively interfere with the formation of B7.1/B7-H1 heterodimers, or modify their conformation. As interactors of B7-H1/B7.1 molecules, Ad5FB4 particles and/or their penton capsomeres represent potential therapeutic agents targeting cancer cells that had developed immunoevasion mechanisms

    Thermal Inactivation of Infectious Hepatitis E Virus in Experimentally Contaminated Food

    Full text link
    International audienceHepatitis E virus (HEY) infection of zoonotic origin is an emerging concern in industrialized countries. In the past few years, several cases of zoonotic hepatitis E have been identified and the consumption of food products derived from pork liver have been associated with clusters of human cases. More specifically, raw or undercooked pork products have been incriminated. Few data on the effect of heating on HEY inactivation in food products are available. In the present study, the various times and temperatures that are used during industrial processing of pork products were applied to experimentally contaminated food preparations. After treatment, the presence of residual infectious virus particles was investigated using real-time reverse transcription-PCR and an in vivo experimental model in pigs. Results show that heating the food to an internal temperature of 71 degrees C for 20 min is necessary to completely inactivate HEY. These results are very important for determining processing methods to ensure food safety in regard to food-borne hepatitis E

    Identical Consensus Sequence and Conserved Genomic Polymorphism of Hepatitis E Virus during Controlled Interspecies Transmission

    Full text link
    International audienceHigh-throughput sequencing of bile and feces from two pigs experimentally infected with human hepatitis E virus (HEV) of genotype 3f revealed the same full-length consensus sequence as in the human sample. Twenty-nine percent of polymorphic sites found in HEV from the human sample were conserved throughout the infection of the heterologous host. The interspecies transmission of HEV quasispecies is the result of a genomic negative-selection pressure on random mutations which can be deleterious to the viral population. HEV intrahost nucleotide diversity was found to be in the lower range of other human RNA viruses but correlated with values found for zoonotic viruses. HEV transmission between humans and pigs does not seem to be modulated by host-specific mutations, suggesting that adaptation is mainly regulated by ecological drivers

    New models of hepatitis E virus replication in human and porcine hepatocyte cell lines

    Full text link
    International audienceHepatitis E virus (HEV) causes acute, enterically transmitted hepatitis in human. It is associated with large epidemics in tropical and subtropical regions where it is endemic or with sporadic cases in non-endemic regions. Unlike other hepatitis viruses, HEV has several animal reservoirs. Phylogenetic studies on HEV human and animal sequences, and the identification of cases of direct transmission from animal to human strongly suggest that HEV is a zoonotic agent. The lack of efficient cell culture models limits studies on molecular and cellular aspects of HEV infection and species barrier crossing. The present study reports on the development of two new in vitro models of HEV replication using a human hepatoma-derived cell line, HepaRG, and a porcine embryonic stem cell-derived cell line, PICM-19. These two cell lines have morphological and functional properties similar to primary hepatocytes. These in vitro culture systems support HEV replication and release of encapsidated RNA. These new models represent a powerful tool for studying the viral replication cycle, species barrier crossing and virulence factors

    Pyrimethamine inhibits rabies virus replication in vitro

    Full text link
    International audienceRabies virus transmits from animals to humans and causes encephalitis. Every year more than 15 million people receive a post exposure prophylaxis (PEP) treatment that is highly effective in the prevention of rabies disease. However, when clinical symptoms appear, for example in people who did not receive PEP, rabies is almost invariably fatal. Due to the limited access to PEP in some target populations, mostly in Asia and in Africa, rabies causes at least 59,000 deaths a year. PEP is not effective after the onset of symptoms and attempts to develop a treatment for clinical rabies have been unsuccessful. After screening a library of 385 FDA-approved drugs, we found that pyrimethamine inhibits rabies infection in vitro through the inhibition of adenosine synthesis. In addition, this compound shows a synergistic interaction with ribavirin. Unfortunately, in rabies infected-mice, pyrimethamine showed no efficacy. One possible explanation may be that the antiviral effect is negated by the observed interference of pyrimethamine with the innate immune response

    Quantitative proteomics identifies host factors modulated during acute hepatitis E virus infection in the swine model

    Full text link
    International audienceHepatitis E virus (HEV) causes acute enterically transmitted hepatitis. In industrialized countries, it is a zoonotic disease, with swine being the major reservoir of human HEV contamination. The occurrence and severity of the disease are variable, with clinical symptoms ranging from asymptomatic to self-limiting acute hepatitis, chronic infection, or fulminant hepatitis. In the absence of a robust cell culture system or small-animal models, the HEV life cycle and pathological process remain unclear. To characterize HEV pathogenesis and virulence mechanisms, a quantitative proteomic analysis was carried out to identify cellular factors and pathways modulated during acute infection of swine. Three groups of pigs were inoculated with three different strains of swine HEV to evaluate the possible role of viral determinants in pathogenesis. Liver samples were analyzed by a differential proteomic approach, two-dimensional difference in gel electrophoresis, and 61 modulated proteins were identified by mass spectroscopy. The results obtained show that the three HEV strains replicate similarly in swine and that they modulate several cellular pathways, suggesting that HEV impairs several cellular processes, which can account for the various types of disease expression. Several proteins, such as heterogeneous nuclear ribonucleoprotein K, apolipoprotein E, and prohibitin, known to be involved in other viral life cycles, were upregulated in HEV-infected livers. Some differences were observed between the three strains, suggesting that HEV's genetic variability may induce variations in pathogenesis. This comparative analysis of the liver proteome modulated during infection with three different strains of HEV genotype 3 provides an important basis for further investigations on the factors involved in HEV replication and the mechanism of HEV pathogenesis. IMPORTANCE Hepatitis E virus (HEV) is responsible for acute hepatitis, with clinical symptoms ranging from asymptomatic to self-limiting acute hepatitis, chronic infection, or fulminant hepatitis. In industrialized countries, HEV is considered an emerging zoonotic disease, with swine being the principal reservoir for human contamination. The viral and cellular factors involved in the replication and/or pathogenesis of HEV are still not fully known. Here we report that several cellular pathways involved in cholesterol and lipid metabolism or cell survival were modulated during HEV infection in the swine model. Moreover, we observed a difference between the different swine strains, suggesting that HEV's genetic variability could play a role in pathogenesis. We also identified some proteins known to be involved in other viral cycles. Our study provides insight into the mechanisms modulated during HEV infection and constitutes a useful reference for future work on HEV pathogenesis and virulence

    Hepatitis E Virus Exposure is Increased in Pork Butchers from Burkina Faso

    Full text link
    International audienceWe conducted the first survey of zoonotic risk of Hepatitis E virus (REV) transmissions in Ouagadougou, Burkina Faso, through the direct contact with pork meat during professional activity. Anti-REV antibodies were more prevalent in pork butchers, 76% than in the general population, which was 47.8% in 2013 (odds ratio = 3.46, 95% CI = 2.85-4.21, P < 0.001). Among slaughter-aged swine, REV seroprevalence was of 80%, and REV RNA was detected in 1% of pork livers. Phylogenetic analysis pointed out HEV genotype 3. Thus, in addition to possible HEV contamination through the water source, as in endemic region, zoonotic transmissions of REV probably occur in west Africa

    Targeting Spare CC Chemokine Receptor 5 (CCR5) as a Principle to Inhibit HIV-1 Entry.

    Get PDF
    International audience: CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for inhibiting HIV infection. We exploited the characteristics of the chemokine analog PSC-RANTES (N-α-(n-nonanoyl)-des-Ser(1)-[l-thioprolyl(2), l-cyclohexylglycyl(3)]-RANTES(4-68)), which displays potent anti-HIV-1 activity. We show that native chemokines fail to prevent high-affinity binding of PSC-RANTES, analog-mediated calcium release (in desensitization assays), and analog-mediated CCR5 internalization. These results indicate that a pool of spare CCR5 may bind PSC-RANTES but not native chemokines. Improved recognition of CCR5 by PSC-RANTES may explain why the analog promotes higher amounts of β-arrestin 2*CCR5 complexes, thereby increasing CCR5 down-regulation and HIV-1 inhibition. Together, these results highlight that spare CCR5, which might permit HIV-1 to escape from chemokines, should be targeted for efficient viral blockade

    PERSISTENCE OF CRIMEAN-CONGO HEMORRHAGIC FEVER VIRUS IN THE ENVIRONMENT: MODELING TICK INFECTION WITH HAZARA AND DUGBE VIRUSES.

    Full text link
    International audienceClimate change and ecosystem collapse promote geographic expansion of vector-borne diseases, as witnessed by the recent incursions into Spain of the virus responsible for Crimean-Congo hemorrhagic fever (CCHFV). CCHFV is maintained in a tick-vertebrate, principally involving ticks of the genus Hyalomma. Faced with the spread of Hyalomma ticks, and therefore the threat of a natural introduction of CCHFV into Western Europe, appropriate surveillance tools and control measures need to be implemented. It is in and through the tick that CCHFV is maintained and spread in the environment. The tick itself does not seem to be affected by this viral infection. One of the challenges in implementing control strategies is to understand the molecular mechanisms that intimately link the virus to its arthropod host. Despite the central role of the tick in the biology of CCHFV, these mechanisms have not yet been described, in part because of the constraints associated with handling CCHFV-infected ticks in a biosafety level 4 containment.We propose to model CCHFV tick infection using Hazara and Dugbe viruses, which are handled in BSL2 and BSL3 contained facilities, respectively. This project will define the tick tissues in which the virus replicates during the different stages of the tick cycle (moulting, reproduction) in vivo, and, using tick cell lines in vitro, characterize the molecular dialogue (viral protein-tick protein interactions, viral genomic RNA-tick protein interactions, antiviral immune pathways) that enables CCHFV to persist within Hyalomma ticks and confers on the Hyalomma tick its ability to regulate viral infection, thereby maintaining the virus in the environment and ensuring viral transmission
    corecore