2 research outputs found

    LOFAR 144-MHz follow-up observations of GW170817

    Full text link
    ABSTRACT We present low-radio-frequency follow-up observations of AT 2017gfo, the electromagnetic counterpart of GW170817, which was the first binary neutron star merger to be detected by Advanced LIGO–Virgo. These data, with a central frequency of 144 MHz, were obtained with LOFAR, the Low-Frequency Array. The maximum elevation of the target is just 13.∘{_{.}^{\circ}}7 when observed with LOFAR, making our observations particularly challenging to calibrate and significantly limiting the achievable sensitivity. On time-scales of 130–138 and 371–374 d after the merger event, we obtain 3σ upper limits for the afterglow component of 6.6 and 19.5 mJy beam−1, respectively. Using our best upper limit and previously published, contemporaneous higher frequency radio data, we place a limit on any potential steepening of the radio spectrum between 610 and 144 MHz: the two-point spectral index α144610≳\alpha ^{610}_{144} \gtrsim −2.5. We also show that LOFAR can detect the afterglows of future binary neutron star merger events occurring at more favourable elevations.</jats:p
    corecore