5 research outputs found

    Critical properties of the double exchange ferromagnet Nd0.4Pb0.4MnO3

    Full text link
    Results of a study of dc-magnetization M(T, H), performed on a Nd0.6Pb0.4MnO3 single crystal in the temperature range around T_C (Curie temperature) which embraces the critical region | epsilon | = |T -T_C |/T_C <= 0.05 are reported. The magnetic data analyzed in the critical region using the Kouvel-Fisher method give the values for the T_C =156.47 +/- 0.06 K and the critical exponents, beta = 0.374 +/- 0.006 (from the temperature dependence of magnetization), and gamma = 1.329 +/- 0.003 (from the temperature dependence of initial susceptibility). The critical isotherm M(T_C, H) gives delta = 4.547 +/- 0.1. Thus the scaling law gamma+beta=delta beta is fulfilled. The critical exponents obey the single scaling-equation of state M(H, epsilon) = epsilon^b f_+/- (H/epsilon^(beta + gamma)) where, f_+ for T > T_C and f_- for T< T_C. The exponent values are very close to those expected for the universality class of 3D Heisenberg ferromagnets with short-range interactions.Comment: 19 pages, including 6 figure

    Spectroscopic evidence of Kondo-induced quasi-quartet in CeRh2_2As2_2

    Full text link
    CeRh2_2As2_2 is a new multiphase superconductor with strong suggestions for an additional itinerant multipolar ordered phase. The modeling of the low temperature properties of this heavy fermion compound requires a quartet Ce3+^{3+} crystal-field ground state. Here we provide the evidence for the formation of such a quartet state using x-ray spectroscopy. Core-level photoelectron and x-ray absorption spectroscopy confirm the presence of Kondo hybridization in CeRh2_2As2_2. The temperature dependence of the linear dichroism unambiguously reveils the impact of Kondo physics for coupling the Kramer's doublets into an effective quasi-quartet. Non-resonant inelastic x-ray scattering data find that the Γ7|\Gamma_7^- \rangle state with its lobes along the 110 direction of the tetragonal structure (xyxy orientation) contributes most to the multi-orbital ground state of CeRh2_2As2_2.Comment: 8 pages, 7 figure

    Atomically resolved scanning tunneling microscopy on perovskite manganite single crystals

    No full text
    Atomically resolved scanning tunneling microscopy was conducted on cleaved single crystals of the cubic perovskite Pr0.68Pb0.32MnO3.Several different surface configurations could be resolved including a frequent square arrangement with atomic distances in excellent agreement to the bulk lattice constant of the cubic structure. We also observed stripe formation and a surface reconstruction. The latter is likely related to a polar rare earth-oxygen terminated surface. (C) 2010 American Institute of Physics

    Density of states and spatially inhomogeneous conductance near the metal-insulator transition in Pr0.68Pb0.32Pr_{0.68}Pb_{0.32}MnO3MnO_3 single crystals

    No full text
    Single crystals of Pr0.68Pr_{0.68}Pb0.32_{0.32}MnO3MnO_3 have been investigated by scanning tunneling microscopy over a broad temperature range. In this material, a distinct separation of the ferromagnetic and the metal–insulator transition temperature, TC\approx210 K and TMI\approx255 K, respectively, was observed. Spectroscopic tunneling studies revealed that even on a local scale the system switches from predominantly metallic to insulating within a narrow temperature range around TMI.T_{MI.} Inhomogeneities of the zero-bias conductance with small patches of metallic clusters on a length scale of 2–3 nm, however, were only observed within the temperature range TC<T<TMI. The results give direct evidence for phase separation in the paramagnetic metallic state, but homogeneous ferromagnetic and insulating states

    Interplay of structural distortions, dielectric effects and magnetic order in multiferroic GdMnO3

    No full text
    Multiferroic materials are characterized by simultaneous magnetic and ferroelectric ordering making them good candidates for magneto-electrical applications. We conducted thermal expansion and magnetostriction measurements in magnetic fields up to 14 T on perovskitic GdMnO3 by highresolution capacitive dilatometry in an effort to determine all longitudinal and transversal components of the magnetostriction tensor. Below the ordering temperature T (N) = 42 K, i.e., within the different complex (incommensurate or complex) antiferromagnetic phases, lattice distortions of up to 100 ppm have been found. Although no change of the lattice symmetry occurs, the measurements reveal strong magneto-structural phenomena, especially in the incommensurate sinusoidal antiferromagnetic phase. A strong anisotropy of the magnetoelastic properties was found, in good agreement with the type and propagation vector of the magnetic structure. We demonstrate that our capacitive dilatometry can detect lattice expansion effects and changes of the dielectric permittivity simultaneously because the sample is housed inside the capacitor. A separation of both effects is possible by shielding the sample. Dielectric transitions could be detected by this method and compared to the critical values of H and T in the magnetic phase diagram. Dielectric changes measured at 1 kHz excitation frequency are detected in GdMnO3 at about 180 K, and between 10 K and 25 K in the canted antiferromagnetic structure which is characterized by a complex magnetic order on both the Gd- and Mn-sites
    corecore