160 research outputs found

    Attosecond pulse shaping around a Cooper minimum

    Full text link
    High harmonic generation (HHG) is used to measure the spectral phase of the recombination dipole matrix element (RDM) in argon over a broad frequency range that includes the 3p Cooper minimum (CM). The measured RDM phase agrees well with predictions based on the scattering phases and amplitudes of the interfering s- and d-channel contributions to the complementary photoionization process. The reconstructed attosecond bursts that underlie the HHG process show that the derivative of the RDM spectral phase, the group delay, does not have a straight-forward interpretation as an emission time, in contrast to the usual attochirp group delay. Instead, the rapid RDM phase variation caused by the CM reshapes the attosecond bursts.Comment: 5 pages, 5 figure

    Attosecond Synchronization of High-Order Harmonics from Midinfrared Drivers

    Get PDF
    The group delay dispersion, also known as the attochirp, of high-order harmonics generated in gases has been identified as the main intrinsic limitation to the duration of Fourier-synthesized attosecond pulses. Theory implies that the attochirp, which is inversely proportional to the laser wavelength, can be decreased at longer wavelength. Here we report the first measurement of the wavelength dependence of the attochirp using an all-optical, in situ method [N. Dudovich et al., Nature Phys. 2, 781 (2006)]. We show that a 2 μm driving wavelength reduces the attochirp with respect to 0.8 μm at comparable intensities

    Evolution of binary black holes in self gravitating discs: dissecting the torques

    Full text link
    We study the interplay between gas accretion and gravity torques in changing a binary elements and its total angular momentum (L) budget. Especially, we analyse the physical origin of the gravity torques (T_g) and their location within the disc. We analyse 3D SPH simulations of the evolution of initially quasi-circular massive black hole binaries (BHBs) residing in the central hollow of massive self-gravitating circumbinary discs. We use different thermodynamics within the cavity and for the numerical size of the black holes to show that (i) the BHB eccentricity growth found previously is a general result, independent of the accretion and the adopted thermodynamics; (ii) the semi-major axis decay depends both on the T_g and on the interplay with the disc-binary L-transfer due to accretion; (iii) the spectral structure of the T_g is predominately caused by disc edge overdensities and spiral arms developing in the body of the disc and, in general, does not reflect directly the period of the binary; (iv) the net T_g changes sign across the BHB corotation radius. We quantify the relative importance of the two, which appear to depend on the thermodynamical properties of the instreaming gas, and which is crucial in assessing the disc-binary L-transfer; (v) the net torque manifests as a purely kinematic (non-resonant) effect as it stems from the cavity, where the material flows in and out in highly eccentric orbits. Both accretion onto the black holes and the interaction with gas streams inside the cavity must be taken into account to assess the fate of the BHB. Moreover, the total torque exerted by the disc affects L(BHB) by changing all the elements (mass, mass ratio, eccentricity, semimajor axis) of the BHB. Common prescriptions equating tidal torque to semi-major axis shrinking might therefore be poor approximations for real astrophysical systems

    Pulsar timing arrays and the challenge of massive black hole binary astrophysics

    Full text link
    Pulsar timing arrays (PTAs) are designed to detect gravitational waves (GWs) at nHz frequencies. The expected dominant signal is given by the superposition of all waves emitted by the cosmological population of supermassive black hole (SMBH) binaries. Such superposition creates an incoherent stochastic background, on top of which particularly bright or nearby sources might be individually resolved. In this contribution I describe the properties of the expected GW signal, highlighting its dependence on the overall binary population, the relation between SMBHs and their hosts, and their coupling with the stellar and gaseous environment. I describe the status of current PTA efforts, and prospect of future detection and SMBH binary astrophysics.Comment: 18 pages, 4 figures. To appear in the Proceedings of the 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag

    Massive binary black holes in galactic nuclei and their path to coalescence

    Full text link
    Massive binary black holes form at the centre of galaxies that experience a merger episode. They are expected to coalesce into a larger black hole, following the emission of gravitational waves. Coalescing massive binary black holes are among the loudest sources of gravitational waves in the Universe, and the detection of these events is at the frontier of contemporary astrophysics. Understanding the black hole binary formation path and dynamics in galaxy mergers is therefore mandatory. A key question poses: during a merger, will the black holes descend over time on closer orbits, form a Keplerian binary and coalesce shortly after? Here we review progress on the fate of black holes in both major and minor mergers of galaxies, either gas-free or gas-rich, in smooth and clumpy circum-nuclear discs after a galactic merger, and in circum-binary discs present on the smallest scales inside the relic nucleus.Comment: Accepted for publication in Space Science Reviews. To appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher

    Current Status of Simulations

    Full text link
    As the title suggests, the purpose of this chapter is to review the current status of numerical simulations of black hole accretion disks. This chapter focuses exclusively on global simulations of the accretion process within a few tens of gravitational radii of the black hole. Most of the simulations discussed are performed using general relativistic magnetohydrodynamic (MHD) schemes, although some mention is made of Newtonian radiation MHD simulations and smoothed particle hydrodynamics. The goal is to convey some of the exciting work that has been going on in the past few years and provide some speculation on future directions.Comment: 15 pages, 14 figures, to appear in the proceedings of the ISSI-Bern workshop on "The Physics of Accretion onto Black Holes" (8-12 October 2012

    Supermassive Black Hole Binaries: The Search Continues

    Full text link
    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag

    High-speed fixed-target serial virus crystallography

    Get PDF
    We report a method for serial X-ray crystallography at X-ray free-electron lasers (XFELs), which allows for full use of the current 120-Hz repetition rate of the Linear Coherent Light Source (LCLS). Using a micropatterned silicon chip in combination with the high-speed Roadrunner goniometer for sample delivery, we were able to determine the crystal structures of the picornavirus bovine enterovirus 2 (BEV2) and the cytoplasmic polyhedrosis virus type 18 polyhedrin, with total data collection times of less than 14 and 10 min, respectively. Our method requires only micrograms of sample and should therefore broaden the applicability of serial femtosecond crystallography to challenging projects for which only limited sample amounts are available. By synchronizing the sample exchange to the XFEL repetition rate, our method allows for most efficient use of the limited beam time available at XFELs and should enable a substantial increase in sample throughput at these facilities

    Menus for Feeding Black Holes

    Full text link
    Black holes are the ultimate prisons of the Universe, regions of spacetime where the enormous gravity prohibits matter or even light to escape to infinity. Yet, matter falling toward the black holes may shine spectacularly, generating the strongest source of radiation. These sources provide us with astrophysical laboratories of extreme physical conditions that cannot be realized on Earth. This chapter offers a review of the basic menus for feeding matter onto black holes and discusses their observational implications.Comment: 27 pages. Accepted for publication in Space Science Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher

    Foundations of Black Hole Accretion Disk Theory

    Get PDF
    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at http://www.livingreviews.org/lrr-2013-
    • …
    corecore