1,443 research outputs found
A geostationary imaging spectrometer TOMS instrument
One design for a geostationary Total Ozone Mapping Spectrometer (TOMS) with many desirable features is an imaging spectrometer. A preliminary study makes use of a 0.25 m Czerny-Turner spectrometer with which the Earth is imaged on a charge-coupled device (CCD) in dispersed light. The wavelength is determined by a movable grating which can be set arbitrarily by ground control. The signal integration time depends on wavelength but this system allows arbitrary timing by command. Special circumstances such as a requirement to track a low-lying sulfur dioxide cloud or a need to discriminate high level ozone from total ozone at midlatitudes could be obtained by adding a particular wavelength to the normally pre-programmed time sequence. The incident solar irradiance is measured by deploying a diffuser plate in the field of view. Individual detector elements correspond to scene elements in which the several wavelengths are serially sampled and the Earth radiance is compared to the incident sunlight. Thus the problem of uncorrelated drift of multiple detectors is removed
Van Allen Probes observations of direct wave-particle interactions
Abstract Quasiperiodic increases, or bursts, of 17-26 keV electron fluxes in conjunction with chorus wave bursts were observed following a plasma injection on 13 January 2013. The pitch angle distributions changed during the burst events, evolving from sinN(α) to distributions that formed maxima at α = 75-80°, while fluxes at 90° and \u3c60° remained nearly unchanged. The observations occurred outside of the plasmasphere in the postmidnight region and were observed by both Van Allen Probes. Density, cyclotron frequency, and pitch angle of the peak flux were used to estimate resonant electron energy. The result of ∼15-35 keV is consistent with the energies of the electrons showing the flux enhancements and corresponds to electrons in and above the steep flux gradient that signals the presence of an Alfvén boundary in the plasma. The cause of the quasiperiodic nature (on the order of a few minutes) of the bursts is not understood at this time
Structure of 10N in 9C+p resonance scattering
The structure of exotic nucleus 10N was studied using 9C+p resonance
scattering. Two L=0 resonances were found to be the lowest states in 10N. The
ground state of 10N is unbound with respect to proton decay by 2.2(2) or 1.9(2)
MeV depending on the 2- or 1- spin-parity assignment, and the first excited
state is unbound by 2.8(2) MeV.Comment: 6 pages, 4 figures, 1 table, submitted to Phys. Lett.
An empirically observed pitch-angle diffusion eigenmode in the Earth\u27s electron belt near L* = 5.0
Abstract Using data from NASA\u27s Van Allen Probes, we have identified a synchronized exponential decay of electron flux in the outer zone, near L* = 5.0. Exponential decays strongly indicate the presence of a pure eigenmode of a diffusion operator acting in the synchronized dimension(s). The decay has a time scale of about 4 days with no dependence on pitch angle. While flux at nearby energies and L* is also decaying exponentially, the decay time varies in those dimensions. This suggests the primary decay mechanism is elastic pitch angle scattering, which itself depends on energy and L *. We invert the shape of the observed eigenmode to obtain an approximate shape of the pitch angle diffusion coefficient and show excellent agreement with diffusion by plasmaspheric hiss. Our results suggest that empirically derived eigenmodes provide a powerful diagnostic of the dynamic processes behind exponential decays
Nuclear structure beyond the neutron drip line: the lowest energy states in He via their T=5/2 isobaric analogs in Li
The level structure of the very neutron rich and unbound He nucleus has
been the subject of significant experimental and theoretical study. Many recent
works have claimed that the two lowest energy He states exist with spins
and and widths on the order of hundreds of keV.
These findings cannot be reconciled with our contemporary understanding of
nuclear structure. The present work is the first high-resolution study with low
statistical uncertainty of the relevant excitation energy range in the
He system, performed via a search for the T=5/2 isobaric analog states
in Li populated through He+p elastic scattering. The present data show
no indication of any narrow structures. Instead, we find evidence for a broad
state in He located approximately 3 MeV above the neutron
decay threshold
Weather research requirements to improve space launch from Cape Canaveral Air Force Station and NASA Kennedy Space Center
Weather has a large affect on operations at Cape Canaveral Air Force Station (CCAFS) and NASA Kennedy Space Center (KSC). Weather is the leading source of scrubs and delays to space launch from CCAFS/KSC. Weather has an even larger impact on ground processing as space launch vehicles and payloads are prepared in the months before space launch. Many of those operations are very sensitive to weather. In addition, the weather in Florida is notoriously difficult to predict, especially during the summer when rapid deep convection can occur in minutes. Finally, the weather can be extremely subtle in this area during summer, e.g. exceedingly weak low-level boundaries usually determine where thunderstorms form.
The Air Force 45th Weather Squadron (45WS) provides comprehensive weather support to CCAFS/KSC. The 45WS uses one of the most dense and unique suite of weather sensors in operational meteorology to provide that weather support. The 45 WS has an active program of facilitating research and transitioning that research into operations. These efforts include working with universities, government agencies, and contractors. Of special note is NASA’s Applied Meteorology Unit, a NASA funded organization that performs technology transition to improve weather support to America’s space program.
There are many areas of research that would help 45WS improve their weather support: lightning cessation, lightning onset, lightning detection/warnings/reports, convective winds, elevated peak winds in winter, and many others. The 45WS especially wants research to improve applications of two tools: local numerical models and dual polarization radar. This paper will also discuss opportunities for improved space weather support
Rare coding SNP in DZIP1 gene associated with late-onset sporadic Parkinson's disease
We present the first application of the hypothesis-rich mathematical theory
to genome-wide association data. The Hamza et al. late-onset sporadic
Parkinson's disease genome-wide association study dataset was analyzed. We
found a rare, coding, non-synonymous SNP variant in the gene DZIP1 that confers
increased susceptibility to Parkinson's disease. The association of DZIP1 with
Parkinson's disease is consistent with a Parkinson's disease stem-cell ageing
theory.Comment: 14 page
- …