14 research outputs found
Defining the timing of respiratory syncytial virus (RSV) outbreaks: an epidemiological study
BACKGROUND: Seasonal RSV infections occur every year and affect particularly children under six months of age. Passive immunoprophylaxis with monoclonal antibody Palivizumab is recommended in the period with high risk of RSV infection. This study aims to define the period for the southern part of Germany (Stuttgart area). METHODS: Epidemiological analysis of the RSV situation in southern Germany from 1996 to 2004 and comparison of results with literature was made. The respiratory tract specimens were sent in for the detection of RSV mainly by paediatric clinics. Detection of RSV was carried out mainly by real-time RT-PCR or by ELISA "Pathfinder". RSV outbreaks were depicted as an absolute number and as a percentage of RSV diagnoses in a month. Onsets, offsets, peaks, duration and severity of RSV seasons were defined and analysed. RESULTS: An early season with strong RSV activity (early-high phase) was followed by a weaker late season (late-low phase) in a regular biennial rhythm. However, onsets, offsets and durations of outbreaks varied significantly from year to year. RSV epidemics in southern Germany were found to oscillate in an antiphase with RSV epidemics in Finland and Sweden. CONCLUSION: The long-term regular biennial rhythm allows predicting whether the next outbreak will be late or early and whether RSV activity will be strong or weak. Not foreseeable, however, is the precise time of increase and decrease of RSV activity. Moreover, the regular seasonal pattern may be disrupted by irregular outbreaks. Thus, activity of RSV has to be monitored every year to define the period with high risk of infection
A prospective, double-blind, randomized, controlled clinical trial comparing standard wound care with adjunctive hyperbaric oxygen therapy (HBOT) to standard wound care only for the treatment of chronic, non-healing ulcers of the lower limb in patients with diabetes mellitus: a study protocol
<p>Abstract</p> <p>Background</p> <p>It has been suggested that the use of adjunctive hyperbaric oxygen therapy improves the healing of diabetic foot ulcers, and decreases the risk of lower extremity amputations. A limited number of studies have used a double blind approach to evaluate the efficacy of hyperbaric oxygen therapy in the treatment of diabetic ulcers. The primary aim of this study is to assess the efficacy of hyperbaric oxygen therapy plus standard wound care compared with standard wound care alone in preventing the need for major amputation in patients with diabetes mellitus and chronic ulcers of the lower limb.</p> <p>Methods/Design</p> <p>One hundred and eighteen (59 patients per arm) patients with non-healing diabetic ulcers of the lower limb, referred to the Judy Dan Research and Treatment Centre are being recruited if they are at least 18 years of age, have either Type 1 or 2 diabetes with a Wagner grading of foot lesions 2, 3 or 4 on lower limb not healing for at least 4 weeks. Patients receive hyperbaric oxygen therapy every day for 6 weeks during the treatment phase and are provided ongoing wound care and weekly assessments. Patients are required to return to the study centre every week for an additional 6 weeks of follow-up for wound evaluation and management. The primary outcome is freedom from having, or meeting the criteria for, a major amputation (below knee amputation, or metatarsal level) up to 12 weeks after randomization. The decision to amputate is made by a vascular surgeon. Other outcomes include wound healing, effectiveness, safety, healthcare resource utilization, quality of life, and cost-effectiveness. The study will run for a total of about 3 years.</p> <p>Discussion</p> <p>The results of this study will provide detailed information on the efficacy of hyperbaric oxygen therapy for the treatment of non-healing ulcers of the lower limb. This will be the first double-blind randomized controlled trial for this health technology which evaluates the efficacy of hyperbaric oxygen therapy in prevention of amputations in diabetic patients.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00621608">NCT00621608</a></p
Emerging antibody products and Nicotiana manufacturing
Antibody based products are not widely available to address multiple global health challenges due to high costs, limited manufacturing capacity and long manufacturing lead times. Nicotiana-based manufacturing of antibody products may now begin to address these challenges as a result of revolutionary advances in transient expression and altered glycosylation pathways. This review provides examples of emerging antibody-based products (mucosal and systemic) that could be competitive and commercially viable when the attributes of Nicotiana-based manufacturing (large scale, versatile, rapid, low cost) are utilized
Can major amputation rates be decreased in diabetic foot ulcers with hyperbaric oxygen therapy?
Although hyperbaric oxygen therapy has been used for diabetic foot ulcer since the 1980s, there is little information on its efficacy. The aim of this study is to evaluate whether hyperbaric oxygen can decrease major amputation rates and to determine the predictive factors. A total of 184 consecutive patients were treated with hyperbaric oxygen therapy as an adjunct to standard treatment modalities for their diabetic foot ulcer. Of these patients, 115 were completely healed, 31 showed no improvement and 38 underwent amputation. Of the amputations, nine (4.9%) were major amputations (below knee) and 29 were minor. Major amputations were associated with the Wagner grade (p < 0.0001), with the age of the patients (p = 0.028) and with the age of the wounds (p = 0.018). Hyperbaric oxygen therapy can help to reduce the major amputation rates in diabetic foot ulcer. However, further large, multicentre, randomised controlled studies are needed to make more accurate conclusions
The effect of hyperbaric oxygen preconditioning on heat shock protein 72 expression following in vitro stress in human monocytes
Hyperbaric oxygen (HBO) is thought to confer protection to cells via a cellular response to free radicals. This process may involve increased expression of heat shock proteins, in particular the highly inducible heat shock protein 72 (Hsp72). Healthy male volunteers (n = 16) were subjected to HBO for 1 h at 2.8 ATA. Inducible Hsp72 expression was measured by flow cytometry pre-, post- and 4 h-post HBO. Peripheral blood mononuclear cells (PBMC) were isolated from whole blood via density centrifugation pre-, post- and 4 h post-HBO. PBMC were then subjected to an in vitro heat shock at 40°C or hypoxia at 37°C (5% O2) with a control at 37°C. Cells were then analysed for Hsp72 expression by flow cytometry. Monocytes showed no significant changes in Hsp72 expression following HBO. No detectable Hsp72 was seen in lymphocytes or neutrophils. Following in vitro hypoxic exposure, a significant increase in Hsp72 expression was observed in monocytes isolated immediately post- (p = 0.006) and 4 h post-HBO (p = 0.010) in comparison to control values. HBO does not induce Hsp72 expression in PBMC. The reported benefits of HBO in terms of pre-conditioning are not due to inducement of Hsp72 expression in circulating blood cells, but may involve an enhancement of the stress response