9 research outputs found
Mutant Lrp1 Knock-In Mice Generated by Recombinase-Mediated Cassette Exchange Reveal Differential Importance of the NPXY Motifs in the Intracellular Domain of LRP1 for Normal Fetal Development
Lrp1 knock-in mice carrying either a wild-type allele or three different mutated alleles encoding the multifunctional endocytic receptor LRP1 were generated by recombinase-mediated cassette exchange (RMCE). Reinsertion by RMCE of a wild-type allele led to a normal pattern and level of gene expression and a completely normal phenotype, indicating that the RMCE procedure itself is neutral with respect to the function of the gene locus. In contrast, reinsertion of mutated LRP1 alleles carrying either inactivating mutations in the proximal NPXY motif (NPTY→AATA) of the cytoplasmic domain or in the furin cleavage site (RHRR→AHAA) caused distinctive liver phenotypes: respectively, either a late fetal destruction of the organ causing perinatal death or a selective enlargement of von-Kupffer cell lysosomes reminiscent of a mild lysosomal storage without an apparent negative effect on animal survival. Notably, mutation of the distal NPXY motif overlapping with an YXXL motif (NPVYATL→AAVAATL) did not cause any obvious pathological effect. The mutations showed no effect on the LRP1 expression level; however, as expected, the proteolytic maturation of LRP1 into its two subunits was significantly impaired, although not completely abolished, in the furin cleavage mutant. These data demonstrate that RMCE is a reliable and efficient approach to generate multiple mutant knock-in alleles for in vivo functional analysis of individual domains or motifs of large multidomain proteins. Its application in Lrp1 reveals dramatically variant phenotypes, of which further characterization will definitively contribute to our understanding of the biology of this multifunctional receptor
Opposing effects of apolipoprotein m on catabolism of apolipoprotein B-containing lipoproteins and atherosclerosis
Rationale: Plasma apolipoprotein (apo)M is mainly associated with high-density lipoprotein (HDL). HDL-bound apoM is antiatherogenic in vitro. However, plasma apoM is not associated with coronary heart disease in humans, perhaps because of a positive correlation with plasma low-density lipoprotein (LDL). Objective: We explored putative links between apoM and very-low-density (VLDL)/LDL metabolism and the antiatherogenic potential of apoM in vivo. Methods and Results: Plasma apoM was increased approximately 2.1 and approximately 1.5 fold in mice lacking LDL receptors (Ldlr(-/-)) and expressing dysfunctional LDL receptor-related protein 1 (Lrp1(n2/n2)), respectively, but was unaffected in apoE-deficient (ApoE(-/-)) mice. Thus, pathways controlling catabolism of VLDL and LDL affect plasma apoM. Overexpression ( approximately 10-fold) of human apoM increased (50% to 70%) and apoM deficiency decreased ( approximately 25%) plasma VLDL/LDL cholesterol in Ldlr(-/-) mice, whereas apoM did not affect plasma VLDL/LDL in mice with intact LDL receptors. Moreover, plasma clearance of apoM-enriched VLDL/LDL was slower than that of control VLDL/LDL in mice lacking functional LDL receptors and LRP1, suggesting that apoM impairs the catabolism of VLDL/LDL that occurs independently of the LDL receptor and LRP1. ApoM overexpression decreased atherosclerosis in ApoE(-/-) (60%) and cholate/cholesterol-fed wild-type mice (70%). However, in Ldlr(-/-) mice the antiatherogenic effect of apoM was attenuated by its VLDL/LDL-raising effect. Conclusion: The data suggest that defect LDL receptor function leads to increased plasma apoM concentrations, which in turn, impairs the removal of VLDL/LDL from plasma. This mechanism opposes the otherwise antiatherogenic effect of apoM
The plasma concentration of HDL-associated apoM is influenced by LDL receptor-mediated clearance of apoB-containing particles
ApoM is mainly associated with HDL. Nevertheless, we have consistently observed positive correlations of apoM with plasma LDL cholesterol in humans. Moreover, LDL receptor deficiency is associated with increased plasma apoM in mice. Here, we tested the idea that plasma apoM concentrations are affected by the rate of LDL receptor-mediated clearance of apoB-containing particles. We measured apoM in humans each carrying one of three different LDL receptor mutations (n = 9) or the apoB3500 mutation (n = 12). These carriers had increased plasma apoM (1.34 +/- 0.13 mu M, P = 0.003, and 1.23 +/- 0.10 mu M, P = 0.02, respectively) as compared with noncarriers (0.93 +/- 0.04 mu M). When we injected human apoM-containing HDL into Wt (n = 6) or LDL receptor-deficient mice (n = 6), the removal of HDL-associated human apoM was delayed in the LDL receptor-deficient mice. After 2 h, 54 +/- 5% versus 90 +/- 8% (P < 0.005) of the initial amounts of human apoM remained in the plasma of Wt and LDL receptor-deficient mice, respectively. Finally, we compared the turnover of radio-iodinated LDL and plasma apoM concentrations in 45 normocholesterolemic humans. There was a negative correlation between plasma apoM and the fractional catabolic rate of LDL (r = -0.38, P = 0.009). These data suggest that the plasma clearance of apoM, despite apoM primarily being associated with HDL, is influenced by LDL receptor-mediated clearance of apoB-containing particles.-Christoffersen, C., M. Benn, P. M. Christensen, P. L. S. M. Gordts, A. J. M. Roebroek, R. Frikke-Schmidt, A. Tybjaerg-Hansen, B. Dahlback, and L. B. Nielsen. The plasma concentration of HDL-associated apoM is influenced by LDL receptor-mediated clearance of apoB-containing particles. J. Lipid Res. 2012. 53: 2198-2204