14,760 research outputs found
Flourishing ‘older-old’ (80+) adults: personal projects and their enabling places
This paper sets out a framework for exploring flourishing in older age through the lens of what older adults are doing in their lives. Applying a model from positive psychology called personal project analysis (PPA) our study captures a snapshot of older people's goals and their environmental context. Targeting older people aged 80+ we applied PPA methods in a semi-structured interview to elicit participants’ personal projects which were scored on eight wellbeing dimensions (e.g., fun, stress). Qualitative data analysis identified what types of personal projects are employed by this older demographic and the environments in which they are carried out. Results showed our participants were vitally engaged in a wide spectrum of projects exercised in a range of ‘enabling places’ which we categorised as (1) restorative niches (places that afford psychological restoration) such as nature settings (e.g. a garden, local park or riverside); (2) affinity niches (places that afford social opportunities) such as religious venues, social clubs, or cafés; and (3) flow niches (places that afford immersion in mental or physical tasks) such as the home (e.g. the kitchen) or a place associated with a previous career or amateur sport (e.g. cricket club). Our findings are discussed in relation to older people's wellbeing and the role of the built environment. Despite the increasingly negative stereotyping of the ‘older-old’ our study shows that the final decades of life can be a period of continuing growth and learning, a life stage with its own distinct character, rather than a period of decline
Vortex information display system program description manual
A vortex information display system is described which provides flexible control through system-user interaction for collecting wing-tip-trailing vortex data, processing this data in real time, displaying the processed data, storing raw data on magnetic tape, and post processing raw data. The data is received from two asynchronous laser Doppler velocimeters (LDV's) and includes position, velocity, and intensity information. The raw data is written onto magnetic tape for permanent storage and is also processed in real time to locate vortices and plot their positions as a function of time. The interactive capability enables the user to make real time adjustments in processing data and provides a better definition of vortex behavior. Displaying the vortex information in real time produces a feedback capability to the LDV system operator allowing adjustments to be made in the collection of raw data. Both raw data and processing can be continually upgraded during flyby testing to improve vortex behavior studies. The post-analysis capability permits the analyst to perform in-depth studies of test data and to modify vortex behavior models to improve transport predictions
LoCoH: nonparameteric kernel methods for constructing home ranges and utilization distributions.
Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon (MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. Here we extend the LoCoH in two ways: "fixed sphere-of-influence," or r-LoCoH (kernels constructed from all points within a fixed radius r of each reference point), and an "adaptive sphere-of-influence," or a-LoCoH (kernels constructed from all points within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal to a), and compare them to the original "fixed-number-of-points," or k-LoCoH (all kernels constructed from k-1 nearest neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas (holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and irregular structures (e.g., rocky outcrops). We also demonstrate that a-LoCoH is generally superior to k- and r-LoCoH (with software for all three methods available at http://locoh.cnr.berkeley.edu)
Are the public getting the message about antimicrobial resistance?
Raising public awareness of the need to use antibiotics appropriately is a major focus of the UK Government's strategy to tackle antimicrobial resistance. To investigate the public's views on antibiotic use and resistance we conducted a survey of 120 people as part of patient engagement activities held at University College London Hospital in June 2015
Including Systematic Uncertainties in Confidence Interval Construction for Poisson Statistics
One way to incorporate systematic uncertainties into the calculation of
confidence intervals is by integrating over probability density functions
parametrizing the uncertainties. In this note we present a development of this
method which takes into account uncertainties in the prediction of background
processes, uncertainties in the signal detection efficiency and background
efficiency and allows for a correlation between the signal and background
detection efficiencies. We implement this method with the Feldman & Cousins
unified approach with and without conditioning. We present studies of coverage
for the Feldman & Cousins and Neyman ordering schemes. In particular, we
present two different types of coverage tests for the case where systematic
uncertainties are included. To illustrate the method we show the relative
effect of including systematic uncertainties the case of dark matter search as
performed by modern neutrino tel escopes.Comment: 23 pages, 10 figures, replaced to match published versio
Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2.
Poly(ADP-ribose) polymerase-1 (PARP-1) has become an important pharmacological target in the treatment of cancer due to its cellular role as a 'DNA-strand break sensor', which leads in part to resistance to some existing chemo- and radiological treatments. Inhibitors have now been developed which prevent PARP-1 from synthesizing poly(ADP-ribose) in response to DNA-breaks and potentiate the cytotoxicity of DNA damaging agents. However, with the recent discoveries of PARP-2, which has a similar DNA-damage dependent catalytic activity, and additional members containing the 'PARP catalytic' signature, the isoform selectivity and resultant pharmacological effects of existing inhibitors are brought into question. We present here the crystal structure of the catalytic fragment of murine PARP-2, at 2.8 A resolution, and compare this to the catalytic fragment of PARP-1, with an emphasis on providing a possible framework for rational drug design in order to develop future isoform-specific inhibitors
Hdo And SO2 Thermal Mapping On Venus: Evidence For Strong SO2 Variability
We have been using the TEXES high-resolution imaging spectrometer at the NASA Infrared Telescope Facility to map sulfur dioxide and deuterated water over the disk of Venus. Observations took place on January 10-12, 2012. The diameter of Venus was 13 arcsec, with an illumination factor of 80%. Data were recorded in the 1344-1370 cm(-1) range (around 7.35 mu m) with a spectral resolving power of 80 000 and a spatial resolution of about 1.5 arcsec. In this spectral range, the emission of Venus comes from above the cloud top (z = 60-80 km). Four HDO lines and tens of SO2 lines have been identified in our spectra. Mixing ratios have been estimated from HDO/CO2 and SO2/CO2 line depth ratios, using weak neighboring transitions of comparable depths. The HDO maps, recorded on Jan. 10 and Jan. 12, are globally uniform with no significant variation between the two dates. A slight enhancement of the HDO mixing ratio toward the limb might be interpreted as a possible increase of the D/H ratio with height above the cloud level. The mean H2O mixing ratio is found to be 1.5 +/-0.75 ppm, assuming a D/H ratio of 0.0312 (i.e. 200 times the terrestrial value) over the cloud deck. The SO2 maps, recorded each night from Jan. 10 to Jan. 12, show strong variations over the disk of Venus, by a factor as high as 5 to 10. In addition, the position of the maximum SO2 mixing ratio strongly varies on a timescale of 24 h. The maximum SO2 mixing ratio ranges between 75 +/-25 ppb and 125 +/-50 ppb between Jan. 10 and Jan. 12. The high variability of sulfur dioxide is probably a consequence of its very short photochemical lifetime.NASA NNX-08AE38A, NNX08AW33G S03NSF AST-0607312, AST-0708074Astronom
- …