808 research outputs found
The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases
The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the conversion of HMG-CoA to mevalonate, a four-electron oxidoreduction that is the rate-limiting step in the synthesis of cholesterol and other isoprenoids. The enzyme is found in eukaryotes and prokaryotes; and phylogenetic analysis has revealed two classes of HMG-CoA reductase, the Class I enzymes of eukaryotes and some archaea and the Class II enzymes of eubacteria and certain other archaea. Three-dimensional structures of the catalytic domain of HMG-CoA reductases from humans and from the bacterium Pseudomonas mevalonii, in conjunction with site-directed mutagenesis studies, have revealed details of the mechanism of catalysis. The reaction catalyzed by human HMG-CoA reductase is a target for anti-hypercholesterolemic drugs (statins), which are intended to lower cholesterol levels in serum. Eukaryotic forms of the enzyme are anchored to the endoplasmic reticulum, whereas the prokaryotic enzymes are soluble. Probably because of its critical role in cellular cholesterol homeostasis, mammalian HMG-CoA reductase is extensively regulated at the transcriptional, translational, and post-translational levels
Micro-Structured Ferromagnetic Tubes for Spin Wave Excitation
Micron scale ferromagnetic tubes placed on the ends of ferromagnetic CoTaZr
spin waveguides are explored in order to enhance the excitation of Backward
Volume Magnetostatic Spin Waves. The tubes produce a closed magnetic circuit
about the signal line of the coplanar waveguide and are, at the same time,
magnetically contiguous with the spin waveguide. This results in a 10 fold
increase in spin wave amplitude. However, the tube geometry distorts the
magnetic field near the spin waveguide and relatively high biasing magnetic
fields are required to establish well defined spin waves. Only the lowest
(uniform) spin wave mode is excited.Comment: 3 pages, 3 figure
Picosecond electrical spectroscopy using monolithic GaAs circuits
This article describes an experimental apparatus for free-space mm-wave transmission measurements (spectroscopy). GaAs nonlinear transmission lines and sampling circuits are used as picosecond pulse generators and detectors, with planar monolithic bowtie antennas with associated substrate lenses used as the radiating and receiving elements. The received pulse is 270 mV amplitude and 2.4 ps rise time. Through Fourier transformation of the received pulse, 30–250 GHz measurements are demonstrated with <=0.3 dB (rms) accuracy
Control of InGaAs facets using metal modulation epitaxy (MME)
Control of faceting during epitaxy is critical for nanoscale devices. This
work identifies the origins of gaps and different facets during regrowth of
InGaAs adjacent to patterned features. Molecular beam epitaxy (MBE) near SiO2
or SiNx led to gaps, roughness, or polycrystalline growth, but metal modulated
epitaxy (MME) produced smooth and gap-free "rising tide" (001) growth filling
up to the mask. The resulting self-aligned FETs were dominated by FET channel
resistance rather than source-drain access resistance. Higher As fluxes led
first to conformal growth, then pronounced {111} facets sloping up away from
the mask.Comment: 18 pages, 7 figure
Broadband Optical Serrodyne Frequency Shifting
We demonstrate serrodyne frequency shifting of light from 200 MHz to 1.2 GHz
with an efficiency of better than 60 percent. The frequency shift is imparted
by an electro-optic phase modulator driven by a high-frequency, high-fidelity
sawtooth waveform that is passively generated by a commercially available
Non-Linear Transmission Line (NLTL). We also implement a push-pull
configuration using two serrodyne-driven phase modulators allowing for
continuous tuning between -1.6 GHz and +1.6 GHz. Compared to competing
technologies, this technique is simple and robust, and offers the largest
available tuning range in this frequency band.Comment: 3 pages, 4 figure
Evaluating the success of a marine protected area: A systematic review approach.
Marine Protected Areas (MPAs), marine areas in which human activities are restricted, are implemented worldwide to protect the marine environment. However, with a large proportion of these MPAs being no more than paper parks, it is important to be able to evaluate MPA success, determined by improvements to biophysical, socio-economic and governance conditions. In this study a systematic literature review was conducted to determine the most frequently used indicators of MPA success. These were then applied to a case study to demonstrate how success can be evaluated. The fifteen most frequently used indicators included species abundance, level of stakeholder participation and the existence of a decision-making and management body. Using the indicator framework with a traffic light system, we demonstrate how an MPA can be evaluated in terms of how well it performs against the indicators using secondary data from the literature. The framework can be used flexibly. For example, where no MPA data currently exist, the framework can be populated by qualitative data provided by local stakeholder knowledge. This system provides a cost-effective and straightforward method for managers and decision-makers to determine the level of success of any MPA and identify areas of weakness. However, given the variety of motivations for MPA establishment, this success needs to be determined in the context of the original management objectives of the MPA with greater weighting being placed on those objectives where appropriate
- …