22 research outputs found
Gravity Load Collapse Behavior of Nonengineered Reinforced Concrete Columns
This paper aims at investigating gravity load collapse behavior of extremely poor quality reinforced concrete columns under cyclic loading. Such columns were usually constructed by local people and may not be designed to meet any of the standards. It was found that their concrete strength may be as low as 5âMPa and the amount of longitudinal reinforcement may be lower than 1%. This type of column is deliberately defined as ânonengineered reinforced concrete column,â or NRCC. During earthquake, the gravity load collapse of the NRCC columns caused a large number of death tolls around the world. In this study, four columns as representative of existing NRCC were tested under cyclic loading. The compressive strength of concrete in order of 5âMPa was used to be representative of columns with poor quality concrete. Two axial load levels of 6 and 18âtons were used to study the influence of axial load level on maximum drift at gravity load collapse. To investigate the effect of bar types on drift capacity, 9âmm round bars were used in two specimens and 12âmm deformed bars were used for the rest of the specimens. The maximum drift before gravity load collapse was very dependent on the axial load level. The maximum drift of the specimens subjected to high axial load (18âtons) was extremely low at approximately 1.75% drifts. The use of deformed bars (associated with larger amount of longitudinal reinforcement) caused the damage to severely dissipate all over the height of the columns. Such damage caused columns to collapse at a lower drift compared to those using round bars. Finally, the plastic hinge model was used to predict the maximum drift of the low strength columns. It was found that the model overly underestimates the drift at gravity load collapse
The Performance of Carbon Fiber in Decreasing the Strain Level of the PC-Longitudinal Bridge (PC-Plank Girder) under Service Load
āļāļēāļāļ§āļīāļāļąāļĒāļāļĩāđāļĄāļļāđāļāđāļāđāļāļāļĩāđāļāļ°āļĻāļķāļāļĐāļēāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāļāļāļāđāļŠāđāļāđāļĒāļāļēāļĢāđāļāļāļāđāļāđāļāļāļĢāđāđāļāļāļēāļĢāđāļāļīāđāļĄāļāļ§āļēāļĄāđāļāđāļāđāļĢāļāļāļāļāđāļāļĢāļāļŠāļĢāđāļēāļāđāļāđāļāļāļ·āđāļāļāļāļāļŠāļ°āļāļēāļāļāđāļēāļĄāļāļĨāļāļāđāļāļĢāļāļĨāļķāļ āļ.āļŠāļĄāļļāļāļĢāļŠāļāļāļĢāļēāļĄ āđāļāļ·āđāļāļāļāļēāļāļŠāļ°āļāļēāļāļĄāļĩāļāļēāļĢāđāļāđāļāļēāļāļĄāļēāļāļĒāđāļēāļāļĒāļēāļ§āļāļēāļ āļāļķāļāđāļāđāļāļģāļāļēāļĢāļāļĢāļ§āļāļŠāļāļāđāļĨāļ°āļāļĢāļ°āđāļĄāļīāļāļāļģāļĨāļąāļāļĢāļąāļāļāđāļģāļŦāļāļąāļāļāļĢāļĢāļāļļāļāļāļāļāļŠāļ°āļāļēāļ āļāđāļ§āļĒāļāļēāļĢāļāļāļŠāļāļāļāļģāļĨāļąāļāļĢāļąāļāļāđāļģāļŦāļāļąāļāļāļĢāļĢāļāļļāļāđāļŠāļĄāļ·āļāļāļāļĢāļīāļ āļāļĨāļāļāļāļāļēāļĢāļāļĢāļ°āđāļĄāļīāļāļāļ§āļēāļĄāļāļ§āļēāļĄāđāļāđāļāđāļĢāļāļāļāļāđāļāļĢāļāļŠāļĢāđāļēāļāļŠāļ°āļāļēāļāđāļāđāļāļđāļāļāļģāļĄāļēāđāļāđāđāļāļāļēāļĢāļāļāļāđāļāļāļāļēāļĢāđāļŠāļĢāļīāļĄāļāļģāļĨāļąāļāđāļāļĢāļāļŠāļĢāđāļēāļāđāļāļĒāđāļāđāđāļŠāđāļāđāļĒāļāļēāļĢāđāļāļāļāđāļŠāļĢāļīāļĄāđāļāļĨāļīāđāļĄāļāļĢāđ(Carbon Fiber Reinforced Polymers: CFRP) āļāļēāļāļāļĨāļāļāļāļāļēāļĢāđāļŠāļĢāļīāļĄāļāļģāļĨāļąāļāđāļāļĢāļāļŠāļĢāđāļēāļāđāļāļĒāļāļēāļĢāļāļīāļāļāļąāđāļāđāļāđāļ CFRP āļāļģāļāļ§āļ 2 āļāļąāđāļ āļāļāļ§āđāļē āļāļēāļĢāđāļŠāļĢāļīāļĄāļāļģāļĨāļąāļāļŠāļēāļĄāļēāļĢāļāļāļģāđāļŦāđāļĢāļ°āļāļąāļāļāđāļēāļāļ§āļēāļĄāđāļāļĢāļĩāļĒāļāđāļĨāļ°āļāļēāļĢāđāļāđāļāļāļąāļ§āļāļĢāļīāđāļ§āļāļāļķāđāļāļāļĨāļēāļāđāļāđāļāļāļ·āđāļāđāļāđāļŠāļ°āļāļēāļāđāļāļĒāļĢāļ§āļĄāļĄāļĩāļāđāļēāļĨāļāļĨāļāļĢāđāļāļĒāļĨāļ° 4.33 āļŠāļģāļŦāļĢāļąāļāļāļ§āļēāļĄāđāļāļĢāļĩāļĒāļ āđāļĨāļ°3.68 āļŠāļģāļŦāļĢāļąāļāļāļēāļĢāđāļāđāļāļāļąāļ§ āļāļķāđāļāđāļŠāļāļāđāļŦāđāđāļŦāđāļāļ§āđāļēāļāļēāļĢāđāļŠāļĢāļīāļĄāļāļģāļĨāļąāļāļāđāļ§āļĒ CFRP āļŠāļēāļĄāļēāļĢāļāļāđāļ§āļĒāđāļāļāļēāļĢāļĨāļāļĢāļ°āļāļąāļāļāļ§āļēāļĄāđāļāļĢāļĩāļĒāļ āđāļĨāļ°āļāļēāļĢāđāļāđāļāļāļąāļ§āļāļĩāđāđāļāļīāļāļāļēāļāļāđāļģāļŦāļāļąāļāļāļĢāļĢāļāļļāļāđāļāđ āđāļĨāļ°āļāļēāļāļāļēāļĢāļāļĢāļ°āđāļĄāļīāļāļāđāļēāđāļĄāđāļĄāļāļāđāļāļąāļāđāļāđāļāļĢāļāļŠāļĢāđāļēāļāļŠāļ°āļāļēāļāļŠāđāļ§āļāļāļāđāļāļĒāļ§āļīāļāļĩ LRFR āļāđāļē Rating Factor (RF) āļāļąāđāļāļĢāļ°āļāļąāļ Inventory āđāļĨāļ°āļĢāļ°āļāļąāļ Operation āļāļāļ§āđāļēāļŦāļĨāļąāļāđāļŠāļĢāļīāļĄāļāļģāļĨāļąāļāļāđāļ§āļĒ CFRP āļŠāļ°āļāļēāļāļŠāļēāļĄāļēāļĢāļāļĢāļąāļāļāđāļģāļŦāļāļąāļāļāļĢāļĢāļāļļāļāđāļāļīāđāļĄāļāļķāđāļāļāļīāļāđāļāđāļāļĢāđāļāļĒāļĨāļ° 35 āđāļŠāļāļāļ§āđāļē āļŠāļ°āļāļēāļāļĒāļąāļāļāļāļŠāļēāļĄāļēāļĢāļāļĢāļąāļāļāđāļģāļŦāļāļąāļāļāļĢāļĢāļāļļāļāđāļāđāđāļāļīāđāļĄāļāļķāđāļ āđāļāļĒāđāļĄāđāđāļāļīāļāļāļēāļĢāļ§āļīāļāļąāļāļīāđāļĨāļ°āļŠāļēāļĄāļēāļĢāļāđāļāđāļŠāļ°āļāļēāļāđāļāđāļāļĒāđāļēāļāļāļĨāļāļāļ āļąāļĒThis research focuses on studying the effectiveness of carbon fiber reinforcement in increasing the strength of the floor structure of the bridge over the Canal Phrae Kluang, Samut Songkhram Province. Due to the prolonged use of the bridge, an inspection and evaluation of the load-bearing capacity of the bridge were conducted through quasi-static load tests. The results of the structural strength assessment were used in the design of structural reinforcement using Carbon Fiber Reinforced Polymers (CFRP). From the results of the reinforcement with the installation of two layers of CFRP, it was found that the reinforcement could reduce the levels of stress and deformation in the middle area of the bridge floor by 4.33% for stress and 3.68% for deformation. This demonstrates that CFRP reinforcement can help in reducing the levels of stress and deformation caused by increased load, and from the assessment of the moment capacity in the upper bridge structure using the LRFR method, both at the Inventory and Operation levels, it was found that after reinforcement with CFRP, the bridge can withstand an increased load capacity by 35%. This indicates that the bridge can still handle an increased load without experiencing failure and can be used safely
āļāļąāļāļĢāļēāļŠāđāļ§āļāļāļ§āļēāļĄāļāļ§āđāļēāļāļāđāļāļāļ§āļēāļĄāļĨāļķāļāļāļāļāļāđāļēāļĢāļāļāļĢāļąāļāļĢāļāļĒāļāđāļāļāļāļāļāļĢāļĩāļāļāļ·āđāļāļŠāļ°āļāļēāļāļāļĩāđāđāļŦāļĄāļēāļ°āļŠāļĄāļŠāļģāļŦāļĢāļąāļāļāđāļāļāļāļąāļāļāļēāļĢāļāļģāļĢāļļāļāđāļāļ·āđāļāļāļāļēāļāļāđāļģāļŦāļāļąāļāļĨāđāļāļĢāļāļāļĢāļĢāļāļļāļ The Appropriate Ratio between Width and Depth of a Concrete Bridge Deck Joint Shoulder for Preventing Damage from Truck Loadings
āļāļēāļāļ§āļīāļāļąāļĒāļāļĩāđāļĄāļĩāļ§āļąāļāļāļļāļāļĢāļ°āļŠāļāļāđāļŦāļĨāļąāļāđāļāļ·āđāļāļŦāļēāļāļąāļāļĢāļēāļŠāđāļ§āļāļāļ§āļēāļĄāļāļ§āđāļēāļāļāđāļāļāļ§āļēāļĄāļĨāļķāļāļāļāļāļāđāļēāļĢāļāļāļĢāļąāļāļĢāļāļĒāļāđāļāļāļāļāļāļĢāļĩāļāļāļ·āđāļāļŠāļ°āļāļēāļāļāļĩāđāđāļŦāļĄāļēāļ°āļŠāļĄāļŠāļģāļŦāļĢāļąāļāļāđāļāļāļāļąāļāļāļēāļĢāļāļģāļĢāļļāļāđāļāļ·āđāļāļāļāļēāļāļāđāļģāļŦāļāļąāļāļĨāđāļāļĢāļāļāļĢāļĢāļāļļāļ āđāļāļĒāđāļāļāļēāļāļ§āļīāļāļąāļĒāļāļĩāđāļāļ°āļāļģāļāļēāļĢāļāļāļŠāļāļāļāđāļēāļĢāļāļāļĢāļąāļāļĢāļāļĒāļāđāļāļāļ·āđāļāļŠāļ°āļāļēāļāļāļĩāđāļĄāļĩāļāļąāļāļĢāļēāļŠāđāļ§āļāļāļ§āļēāļĄāļāļ§āđāļēāļāļāđāļāļāļ§āļēāļĄāļĨāļķāļ (Aspect Ratio) āļāļāļāļāđāļēāļāļĩāđāđāļāļāļāđāļēāļāļāļąāļāļāļģāļāļ§āļ 6 āļĢāļđāļāđāļāļ āļāļēāļĢāļāļāļŠāļāļāļāļ°āļāļģāļĨāļāļāđāļĢāļāļāļĢāļ°āļāļģāļāļēāļāļĨāđāļāļĢāļāļāļĢāļĢāļāļļāļāđāļĨāļ°āđāļĢāļāđāļāļĢāļāļāļĢāļ°āļāļģāļāļąāļāļĢāļāļĒāļāđāļ āļāļĨāļāļēāļĢāļāļāļŠāļāļāļāļāļ§āđāļē āļāļģāļĨāļąāļāļĢāļąāļāļāđāļģāļŦāļāļąāļāļŠāļđāļāļŠāļļāļāļāļāļāļāđāļēāļĢāļāļāļĢāļąāļāļĢāļāļĒāļāđāļāļāļķāđāļāļāļĒāļđāđāļāļąāļāļāļąāļāļĢāļēāļŠāđāļ§āļāļāļ§āļēāļĄāļāļ§āđāļēāļāļāđāļāļāļ§āļēāļĄāļĨāļķāļ (Aspect Ratio) āļāļāļāļāđāļēāļĢāļāļāļĢāļąāļāļĢāļāļĒāļāđāļ āļŦāļēāļāļŠāļąāļāļŠāđāļ§āļāļāļąāļāļāļĨāđāļēāļ§āļĄāļĩāļāđāļēāļĄāļēāļāļāļ§āđāļē 1 āđāļāđāļ 1.33Â 1.5 āđāļĨāļ° 2 āļāđāļēāļĢāļāļāļĢāļąāļāļāļąāđāļāļāļ°āļĄāļĩāļāļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļāđāļāļāļēāļĢāļĢāļąāļāļāđāļģāļŦāļāļąāļāļāļĢāļĢāļāļļāļāđāļāđāļŠāļđāļāļāļ§āđāļēāļāđāļēāļĢāļāļāļĢāļąāļāļĢāļāļĒāļāđāļāļāļĩāđāļĄāļĩāļŠāļąāļāļŠāđāļ§āļāļāļ§āļēāļĄāļāļ§āđāļēāļāļāđāļāļāļ§āļēāļĄāļĨāļķāļ (Aspect Ratio) āđāļāđāļēāļāļąāļ 1 āļāļąāļāļāļąāđāļ āđāļāļ·āđāļāļāđāļāļāļāļąāļāļāļēāļĢāļ§āļīāļāļąāļāļīāļāļāļāļāđāļēāļĢāļāļāļĢāļąāļāļĢāļāļĒāļāđāļ āđāļāļāļēāļĢāļāđāļāļŠāļĢāđāļēāļāļāđāļēāļĢāļāļāļĢāļąāļāļĢāļāļĒāļāđāļāļāļ·āđāļāļŠāļ°āļāļēāļāļāļ§āļĢāļĄāļĩāļāļģāļŦāļāļāđāļŦāđāļŠāļąāļāļŠāđāļ§āļāļāļ§āļēāļĄāļāļ§āđāļēāļāļāđāļāļāļ§āļēāļĄāļĨāļķāļāļāđāļģāļŠāļļāļāđāļāđāļēāļāļąāļ 1.33 āļāļĨāļāļēāļĢāļāļāļŠāļāļāļāļĪāļāļīāļāļĢāļĢāļĄāļāļēāļĢāļ§āļīāļāļąāļāļīāļāļāļāļāđāļēāļĢāļāļāļĢāļąāļāļĢāļāļĒāļāđāļāļāļĩāđ āļŠāļēāļĄāļēāļĢāļāļāļģāđāļāļāļąāļāļāļēāđāļāļ§āļāļēāļāļĄāļēāļāļĢāļāļēāļāļāļēāļĢāļāļāļāđāļāļāđāļŦāđāļāļāļāļāđāļĨāļ°āļĄāļĩāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāļĄāļēāļāļāļķāđāļ āđāļāļ·āđāļāļĨāļāļāļĢāļīāļĄāļēāļāļāļāļāļāļ§āļēāļĄāđāļŠāļĩāļĒāļŦāļēāļĒāļāļĢāļīāđāļ§āļāļāđāļēāļĢāļāļāļĢāļąāļāļĢāļāļĒāļāđāļāļāļĩāđāđāļāļīāļāļāļēāļāļāļēāļĢāļĢāļąāļāļāđāļģāļŦāļāļąāļāļāļĢāļĢāļāļļāļāđāļāđThe main objective of this study is to investigate the appropriate ratio between width and depth of a concrete bridge deck joint shoulder for preventing damage from truck loadings. The study has been carried out by performing a static load test on six different patterns of concrete bridge deck joint shoulders. The test joint shoulders possess different widths and depths or aspect ratios. The specimens were tested statically under a combination of simulated wheel and braking loads. The test results revealed that the ultimate load-carrying capacity of the joint shoulders mainly depended on the aspect ratio of the joint shoulder. The maximum load-carrying capacity was obtained when the aspect ratio was greater than one such as 1.33, 1.5 and 2. However, when the aspect ratio was equal to one the maximum load-carrying capacity was much lower compared to their counterparts. To prevent joint shoulder damage, in practice, the minimum aspect ratio of 1.33 is recommended for bridge deck joint shoulder construction. The results from this study could be further used to improve the design standard for more durable bridge deck joint shoulder construction. Subsequently, the damage to the shoulder from truck loading could be significantly reduced.Keywords: āļāđāļģāļŦāļāļąāļāļĨāđāļāļĢāļāļāļĢāļĢāļāļļāļ; āļāđāļēāļĢāļāļāļĢāļąāļāļĢāļāļĒāļāđāļāļāļ·āđāļāļŠāļ°āļāļēāļ; āļŠāļąāļāļŠāđāļ§āļāļāļ§āļēāļĄāļāļ§āđāļēāļāļāđāļāļāļ§āļēāļĄāļĨāļķāļ;Â Truck loadings; Joint shoulder; Aspect rati
Seismic performance of multi-storey apartment buildings with a soft-storey
Abstract not available
Collapse modelling of soft-storey buildings
This paper presents results from an extensive study investigating the seismic performance of soft-storey buildings. Such buildings rely on the moment and axial action of slender columns to resist horizontal and gravity forces at the ground floor level, and are banned in high seismic regions due to their poor performance in past earthquakes, but are a common feature of buildings in lower seismicity regions such as Australia and many countries in southeast Asia. A summary of the analytical studies and laboratory testing undertaken on limited ductile columns is presented and demonstrates that the displacement limits specified in existing international design guidelines are very conservative. Seismic studies undertaken using displacement principles, as opposed to the conventional force-based principles, indicated that the seismic performance of many of these buildings was satisfactory for the 500 and 1500 year return period events under typical Australian conditions
Finite Element Investigation of Angle Ring Confinement for Clustered Large-size Stud Shear Connector in Full-Depth Precast Concrete Bridge Deck Panel
Full-Depth Precast Concrete (FDPC) bridge deck panel system, consisting of concrete deck and steel girders, has been used widely for highway and bridge construction due to rapid construction and replacement as well as in terms of economics. This system could integrate with clusters of large size headed-stud shear connectors for more significant connection, although larger composite actions were experienced. Therefore, a new angle steel ring confinement was introduced and tested by push-off samples for the most effective shear transfer. The Finite Element Analysis (FEA) of the push-off model with an in-depth investigation of non-linear concrete properties, boundary parameters, and different geometries of angle ring confinement was developed in this study. The FE models were verified with the push-off test in terms of loads, displacements, and failure stages. Nonlinear concrete material models: Concrete Damage (CD) and Drucker Prager (DP) were identified the different abilities either for predicting initial cracks, or determining maximum resistance and critical failure, respectively. The thickness of the angle and the sizes of hook bars were investigated for the most effective aspects of the angle ring confinement. The results showed comparable stiffness and load resistance for various aspects. However, compatible geometries, either 5 mm thick angles with DB12 hook bars or 10 mm angles with DB25 hook bars, were suggested. The final non-linear FEA model was reliable for comparative studies to FDPC push-off with different confinement configurations
Collapse modelling of soft storey buildings
This paper presents results from an extensive study investigating the seismic performance of âsoft-storeyâ buildings. Such buildings, rely on the moment and axial action of slender columns to resist horizontal and gravity forces at the ground floor level, and are banned in high seismic regions due to their poor performance in past earthquakes but are a common feature of buildings in low and moderate seismicity regions such as Australia and parts of SE Asia. Analytical and experimental Investigations undertaken by the authors on a number of existing buildings employing displacement principles as opposed to the conventional forcebased principles indicated that the performance of some of these buildings could be satisfactory for ultimate limit state earthquake scenarios projected for countries like Australia despite their non-compliance with contemporary design standards. A summary of the analytical studies, laboratory testing and full-scale field tests will be presented. This project is aimed at developing a realistic seismic risk model for this class of buildings in order that retrofitting work can be prioritised effectively on the existing building stock
The seismic assessment of soft-storey buildings in Melbourne
Abstract not available