5 research outputs found

    On the Use of Passive Reflecting Surfaces and Compressive Sensing Techniques for Detecting Security Threats at Standoff Distances

    Get PDF
    This work presents a new radar system concept, capable of detecting explosive related threats at standoff distances. The system consists of a two-dimensional aperture of randomly distributed transmitting/receiving antenna elements and a set of passive reflecting surfaces (PRS) positioned in the vicinity of the target. The PRS act as a mirror that enhances the field of view of the radar system, thus increasing its resolution. A 3D imaging algorithm, based on novel compressive sensing techniques, is used in this work. This system configuration provides a resolution of 7.1 mm in cross-range and 25 mm in range, when the target is at 10 m range, and the radar works at 60 GHz center frequency and has 6 GHz bandwidth

    Bifocal dual reflectarray with curved main surface

    Get PDF
    This paper presents a novel approach to synthesizing curved reflectarrays using Geometrical Optics (GO). It introduces the concepts of virtual normal and path length shift, which enable a vector-based formulation of the problem that can be solved using ray tracing techniques. The formulation is applied for the design of two different versions of a Dual Bifocal Reflectarray with a parabolic main surface and a flat subreflectarray. The first version aims to enhance the performance of the multibeam antenna by providing a focal ring located at the feed cluster plane. The second version focuses on improving the scanning characteristics of the antenna in the horizontal plane by incorporating two foci. The synthesis procedure yields samples of the path length shift or its derivatives. To reconstruct the phase distribution, an interpolation scheme is employed and described in this paper. Numerical results are presented for both the focal-ring and two-foci configurations, demonstrating the feasibility of this solution for multibeam or scanning satellite antennas operating in the Ka.European Space Research and Technology Centre | Ref. 4000117113/16/NL/AFMinisterio de Economía y Competitividad | Ref. PDC2021-120959-C21/C22Ministerio de Ciencia e Innovación | Ref. RYC2021-033593-IXunta de Galicia | Ref. GRC-ED431C-2019/2

    Multibeam reflectarrays in Ka-band for efficient antenna farms onboard broadband communication satellites

    Get PDF
    Broadband communication satellites in Ka-band commonly use four reflector antennas to generate a multispot coverage. In this paper, four different multibeam antenna farms are proposed to generate the complete multispot coverage using only two multibeam reflectarrays, making it possible to halve the number of required antennas onboard the satellite. The proposed solutions include flat and curved reflectarrays with single or dual band operation, the operating principles of which have been experimentally validated. The designed multibeam reflectarrays for each antenna farm have been analyzed to evaluate their agreement with the antenna requirements for real satellite scenarios in Ka-band. The results show that the proposed configurations have the potential to reduce the number of antennas and feed-chains onboard the satellite, from four reflectors to two reflectarrays, enabling a significant reduction in cost, mass, and volume of the payload, which provides a considerable benefit for satellite operators.Ministerio de Economía, Industria y Competitividad (España) | Ref. TEC2016-75103-C2-1-RMinisterio de Economía, Industria y Competitividad (España) | Ref. FJCI-2016-29943Agencia Espacial Europea | Ref. 4000117113/16/NL/AFEuropean Commissio

    Bifocal Dual Reflectarray with Curved Main Surface

    No full text
    This paper presents a novel approach to synthesizing curved reflectarrays using Geometrical Optics (GO). It introduces the concepts of virtual normal and path length shift, which enable a vector-based formulation of the problem that can be solved using ray tracing techniques. The formulation is applied for the design of two different versions of a Dual Bifocal Reflectarray with a parabolic main surface and a flat subreflectarray. The first version aims to enhance the performance of the multibeam antenna by providing a focal ring located at the feed cluster plane. The second version focuses on improving the scanning characteristics of the antenna in the horizontal plane by incorporating two foci. The synthesis procedure yields samples of the path length shift or its derivatives. To reconstruct the phase distribution, an interpolation scheme is employed and described in this paper. Numerical results are presented for both the focal-ring and two-foci configurations, demonstrating the feasibility of this solution for multibeam or scanning satellite antennas operating in the Ka
    corecore