5 research outputs found

    Glucocorticoid-regulated kinase CAMKIγ\gamma in the central amygdala controls anxiety-like behavior in mice

    Get PDF
    The expression of the Calcium/Calmodulin-Dependent Protein Kinase I gamma (encoded by the Camk1g gene) depends on the activation of glucocorticoid receptors (GR) and is strongly regulated by stress. Since Camk1g is primarily expressed in neuronal cells of the limbic system in the brain, we hypothesized that it could be involved in signaling mechanisms that underlie the adaptive or maladaptive responses to stress. Here, we find that restraint-induced stress and the GR agonist dexamethasone robustly increase the expression of Camk1g in neurons of the amygdalar nuclei in the mouse brain. To assess the functional role of Camk1g expression, we performed a virally induced knock-down of the transcript. Mice with bilateral amygdala-specific Camk1g knock-down showed increased anxiety-like behaviors in the light-dark box, and an increase in freezing behavior after fear-conditioning, but normal spatial working memory during exploration of a Y-maze. Thus, we confirm that Camk1g is a neuron-specific GR-regulated transcript, and show that it is specifically involved in behaviors related to anxiety, as well as responses conditioned by aversive stimuli

    Glucocorticoid-Regulated Kinase CAMKIγ in the Central Amygdala Controls Anxiety-like Behavior in Mice

    Get PDF
    The expression of the Calcium/Calmodulin-Dependent Protein Kinase I gamma (encoded by the Camk1g gene) depends on the activation of glucocorticoid receptors (GR) and is strongly regulated by stress. Since Camk1g is primarily expressed in neuronal cells of the limbic system in the brain, we hypothesized that it could be involved in signaling mechanisms that underlie the adaptive or maladaptive responses to stress. Here, we find that restraint-induced stress and the GR agonist dexamethasone robustly increase the expression of Camk1g in neurons of the amygdalar nuclei in the mouse brain. To assess the functional role of Camk1g expression, we performed a virally induced knock-down of the transcript. Mice with bilateral amygdala-specific Camk1g knock-down showed increased anxiety-like behaviors in the light-dark box, and an increase in freezing behavior after fear-conditioning, but normal spatial working memory during exploration of a Y-maze. Thus, we confirm that Camk1g is a neuron-specific GR-regulated transcript, and show that it is specifically involved in behaviors related to anxiety, as well as responses conditioned by aversive stimuli

    Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc

    Full text link
    Addictive drugs hijack mechanisms of learning and memory that normally underlie reinforcement of natural rewards and induce synaptic plasticity of glutamatergic transmission in the mesolimbic dopamine (DA) system. In the ventral tegmental area (VTA), a single exposure to cocaine efficiently triggers NMDA receptor-dependent synaptic plasticity in DA neurons, whereas plasticity in the nucleus accumbens (NAc) occurs only after repeated injections. Whether these two forms of plasticity are independent or hierarchically organized remains unknown. We combined ex vivo electrophysiology in acute brain slices with behavioral assays modeling drug relapse in mice and found that the duration of the cocaine-evoked synaptic plasticity in the VTA is gated by mGluR1. Overriding mGluR1 in vivo made the potentiation in the VTA persistent. This led to synaptic plasticity in the NAc, which contributes to cocaine-seeking behavior after protracted withdrawal. Impaired mGluR1 function in vulnerable individuals could represent a first step in the recruitment of the neuronal network that underlies drug addiction
    corecore