52,370 research outputs found
Anomalous Nernst Effect in the Vortex-Liquid Phase of High-Temperature Superconductors by Layer Decoupling
Linear diamagnetism is predicted in the vortex-liquid phase of layered
superconductors at temperatures just below the mean-field phase transition on
the basis of a high-temperature analysis of the corresponding frustrated XY
model. The diamagnetic susceptibility, and the Nernst signal by implication, is
found to vanish with temperature as (T_c0 - T)^3 in the vicinity of the
meanfield transition at T_c0. Quantitative agreement with recent experimental
observations of a diamagnetic signal in the vortex-liquid phase of
high-temperature superconductors is obtained.Comment: 8 pages, 3 figure
Fermion Analogy for Layered Superconducting Films in Parallel Magnetic Field
The equivalence between the Lawrence-Doniach model for films of extreme
type-II layered superconductors and a generalization of the back-scattering
model for spin-1/2 electrons in one dimension is demonstrated. This fermion
analogy is then exploited to obtain an anomalous tail for
the parallel equilibrium magnetization of the minimal double layer case in the
limit of high parallel magnetic fields for temperatures in the
critical regime.Comment: 11 pages of plain TeX, 1 postscript figur
Layered XY-Models, Anyon Superconductors, and Spin-Liquids
The partition function of the double-layer model in the (dual) Villain
form is computed exactly in the limit of weak coupling between layers. Both
layers are found to be locked together through the
Berezinskii-Kosterlitz-Thouless transition, while they become decoupled well
inside the normal phase. These results are recovered in the general case of a
finite number of such layers. When re-interpreted in terms of the dual problems
of lattice anyon superconductivity and of spin-liquids, they also indicate that
the essential nature of the transition into the normal state found in two
dimensions persists in the case of a finite number of weakly coupled layers.Comment: 10 pgs, TeX, LA-UR-94-394
Shape evolution in Yttrium and Niobium neutron-rich isotopes
The isotopic evolution of the ground-state nuclear shapes and the systematics
of one-quasiproton configurations are studied in neutron-rich odd-A Yttrium and
Niobium isotopes. We use a selfconsistent Hartree-Fock-Bogoliubov formalism
based on the Gogny energy density functional with two parametrizations, D1S and
D1M. The equal filling approximation is used to describe odd-A nuclei
preserving both axial and time reversal symmetries. Shape-transition signatures
are identified in the N=60 isotopes in both charge radii and spin-parities of
the ground states. These signatures are a common characteristic for nuclei in
the whole mass region. The nuclear deformation and shape coexistence inherent
to this mass region are shown to play a relevant role in the understanding of
the spectroscopic features of the ground and low-lying one-quasiproton states.
Finally, a global picture of the neutron-rich A=100 mass region from Krypton up
to Molybdenum isotopes is illustrated with the systematics of the nuclear
charge radii isotopic shifts.Comment: 21 pages, 14 figures. To be published in Phys. Rev.
Systematics of one-quasiparticle configurations in neutron-rich Sr, Zr, and Mo odd isotopes with the Gogny energy density functional
The systematics of one-quasiparticle configurations in neutron-rich Sr, Zr,
and Mo odd isotopes is studied within the Hartree-Fock-Bogoliubov plus Equal
Filling Approximation method preserving both axial and time reversal
symmetries. Calculations based on the Gogny energy density functional with both
the standard D1S parametrization and the new D1M incarnation of this functional
are included in our analysis. The nuclear deformation and shape coexistence
inherent to this mass region are shown to play a relevant role in the
understanding of the spectroscopic features of the ground and low-lying
one-quasineutron states.Comment: 11 page
Surface water flood warnings in England: overview, Assessment and recommendations based on survey responses and workshops
Following extensive surface water flooding (SWF) in England in summer 2007, progress has been made in improving the management and prediction of this type of flooding. A rainfall threshold-based extreme rainfall alert (ERA) service was launched in 2009 and superseded in 2011 by the surface water flood risk assessment (SWFRA). Through survey responses from local authorities (LAs) and the outcome of workshops with a range of flood professionals, this paper examines the understanding, benefits, limitations and ways to improve the current SWF warning service. The current SWFRA alerts are perceived as useful by district and county LAs, although their understanding of them is limited. The majority of LAs take action upon receipt of SWFRA alerts, and their reactiveness to alerts appears to have increased over the years and as SWFRA superseded ERA. This is a positive development towards increased resilience to SWF. The main drawback of the current service is its broad spatial resolution. Alternatives for providing localised SWF forecast and warnings were analysed, and a two-tier national-local approach, with pre-simulated scenario-based local SWF forecasting and warning systems, was deemed most appropriate by flood professionals given current monetary, human and technological resources
Signatures of shape transition in odd-A neutron-rich Rubidium isotopes
The isotopic evolution of the ground-state nuclear shapes and the systematics
of one-quasiproton configurations are studied in odd-A Rubidium isotopes. We
use a selfconsistent Hartree-Fock-Bogoliubov formalism based on the Gogny
energy density functional with two parametrizations, D1S and D1M, and
implemented with the equal filling approximation. We find clear signatures of a
sharp shape transition at N=60 in both charge radii and spin-parity of the
ground states, which are robust, consistent to each other, and in agreement
with experiment. We point out that the combined analysis of these two
observables could be used to predict unambiguously new regions where shape
transitions might develop.Comment: 6 pages, 7 figures. To appear in Phys. Rev. C (Rapid Communications
- …