1,317 research outputs found

    The variability of the subantarctic front and the Southern Hemisphere atmospheric jet

    Get PDF
    The latitudinal variations of the Subantarctic Front (SAF) and Southern Hemisphere atmospheric jet were investigated for the period of 1993-2016. Zonal wind velocity, sea surface height and temperature data were used to identify these features over the South Atlantic, South Pacific and Indian Oceans individually. During this period, the atmospheric jet migrated poleward 0.34°S decade-1 in the Atlantic, 0.28°S decade-1 in the Pacific and 0.14°S decade-1 in the Indian oceans. Previous works have shown that the poleward trend is due to the expansion of the tropical belt as a consequence of greenhouse gas increase and cooling of polar stratosphere due to ozone depletion. In addition the atmospheric jet strengthen in all three basins. The SAF represents the Antarctic Circumpolar Current northern boundary and was observed in average at 46.3°S (±0.5°) in the Atlantic, 54.3°S (±0.3°) in the Pacific and 46.6°S (±0.5°) in Indian Oceans. The SAF shows a poleward migration of 0.46°S decade-1 in the Atlantic, 0.20°S decade-1 in the Pacific and 0.27°S decade-1 in the Indian Oceans, which is attributed to the sea level increasing in the Southern Hemisphere due to thermal expansion. The SAF poleward trend is consistent with the positive trend of the Southern Annular Mode during the studied period. Moreover, the jet position is statistically significant correlated to the SAF position in each ocean basin. However, the coefficients are weak: +0.22 for the Atlantic, +0.17 for the Pacific and +0.21 for the Indian oceans. The latitudinal displacement of the SAF in the Pacific is inversely proportional to the El Niño-Southern Oscillations (ENSO). During El Niño years the SAF tend to be more poleward and during La Niña years more equatorward, with maximum correlation of 0.56, with ENSO leading by three months

    Stoichiometric genome-scale models for the chondroitin production in Escherichia coli

    Get PDF
    Chondroitin is a natural-occurring glycosaminoglycan with applications as a nutraceutical and pharmaceutical ingredient. It can be extracted from animal tissues, though chondroitin-like polysaccharides using microorganisms emerged as a safer and more sustainable alternative source. However, chondroitin yields using either natural or recombinant microorganisms are still far from meeting the increasing demand. In this work, stoichiometric models containing the heterologous pathway necessary for producing chondroitin in E. coli were constructed and investigated for mutant predictions that would potentially improve chondroitin yields. Four models of E. coli BL21 (BIGG ID: iECBD_1354, iECD_1391, iEC1356_Bl21DE3, iB21_1397) and one of E. coli K12 (BIGG ID: iJO1366), from which the other models were derived, were used to insert the heterologous pathway composed by two enzymatic steps catalyzed by UDP-Nacetylglucosamine 4-epimerase (UAE) and chondroitin synthase/polymerase (CHSY). The models were imported in Optflux, and the evolutionary optimization was then performed for gene deletion predictions using Strength Pareto Evolutionary Algorithm 2 (SPEA2) and the parsimonious Flux Balance Analysis (pFBA) as the simulation method. Chondroitin production was not predicted to improve by combining gene deletions, probably because the competing pathways that use the intermediates are critical for cell growth. However, gene over and underexpression search allowed to identify several targets. Most of the resulting solutions were composed by the overexpression of one of the genes responsible for the production of the heterologous pathway precursor (either glmU or glmM encoding glucosamine-1-phosphate Nacetyltransferase/UDP-N-acetylglucosamine diphosphorylase and phosphoglucosamine mutase, respectively) combined with the underexpression of one of the genes associated with cell wall recycling pathways (such as membrane-bound lytic transglycosylases mltA, mltB and mltC, or the anhydromuropeptide permease ampG), which contain reactions known to consume such precursors. The solutions herein obtained will be further validated in vivo by constructing the E. coli mutants predicted to improve chondroitin production.info:eu-repo/semantics/publishedVersio

    South Atlantic mass transports obtained from subsurface float and hydrographic data

    Get PDF
    Mean total (barotropic + baroclinic) mass transports of the oceanic top 1000 dbar are estimated for two regions of the South Atlantic between 18°S and 47°S. These transports are obtained by using Gravest Empirical Mode (GEM) fields calculated from historical hydrography with temperature and position data from quasi-isobaric subsurface floats deployed from 1992 through 2001. The float-GEM-estimated total mass transports reveal a Brazil Current with a southward flow of 20.9 Sv at 30°S and 46 Sv at 35°S (1 Sverdrup, Sv = 106 m3 s–1). Two recirculation cells are identified in the southwest corner of the subtropical gyre north of 40°S, one centered at 48°W, 37°S recirculating 28.5 Sv and another centered at 40°W, 38°S recirculating 13.9 Sv. The South Atlantic Current (SAC) flows eastward with 50 Sv at 30°W and splits into two branches in the east, one north of 38°S transporting 19 Sv and one south of 41°S transporting 31 Sv. Of the 39.7 Sv of SAC transport that comes from the Malvinas Current/Antarctic Circumpolar Current (ACC) system in the western basin, only 8.7 Sv flow with the northern branch and the remaining 31 Sv flow as the southern branch out of the South Atlantic rejoining the ACC directly (20.6 Sv) or interacting with the Agulhas Current Retroflection (10.4 Sv). From the northern branch, only 4.7 Sv of Malvinas Current/ACC origin and 10.3 Sv of Brazil Current origin (a total of 15 Sv) stays in the South Atlantic forming the Benguela Current, recirculating within the subtropical gyre. The Agulhas Current Retroflection reaches westward as far as 10°E with a transport of 48 Sv. In terms of mean total transport, the cold-water route carries 4.7 Sv in the upper 1000 dbar whereas the warm-water route carries 8.5 Sv. However, considering the interaction between waters from both origins, there is a total of 19.1 Sv of waters entering the Cape Basin from the Pacific Ocean and 18.5 Sv from the Indian Ocean

    The 2019 Benguela Niño

    Get PDF
    High interannual sea surface temperature anomalies of more than 2°C were recorded along the coasts of Angola and Namibia between October 2019 and January 2020. This extreme coastal warm event that has been classified as a Benguela Niño, reached its peak amplitude in November 2019 in the Angola Benguela front region. In contrast to classical Benguela Niños, the 2019 Benguela Niño was generated by a combination of local and remote forcing. In September 2019, a local warming was triggered by positive anomalies of near coastal wind-stress curl leading to downwelling anomalies through Ekman dynamics off Southern Angola and by anomalously weak winds reducing the latent heat loss by the ocean south of 15°S. In addition, downwelling coastal trapped waves were observed along the African coast between mid-October 2019 and early January 2020. Those coastal trapped waves might have partly emanated from the equatorial Atlantic as westerly wind anomalies were observed in the central and eastern equatorial Atlantic between end of September to early December 2019. Additional forcing for the downwelling coastal trapped waves likely resulted from an observed weakening of the prevailing coastal southerly winds along the Angolan coast north of 15°S between October 2019 and mid-February 2020. During the peak of the event, latent heat flux damped the sea surface temperature anomalies mostly in the Angola Benguela front region. In the eastern equatorial Atlantic, relaxation of cross-equatorial southerly winds might have contributed to the equatorial warming in November 2019 during the peak of the 2019 Benguela Niño. Moreover, for the first time, moored velocities off Angola (11°S) revealed a coherent poleward flow in the upper 100 m in October and November 2019 suggesting a contribution of meridional heat advection to the near-surface warming during the early stages of the Benguela Niño. During the Benguela Niño, a reduction of net primary production in the Southern Angola and Angola Benguela front regions was observed

    Reproductive biology of Oxychilus(Atlantoxychilus) spectabilis (Milne-Edwards, 1885) (Gastropoda: Pulmonata) : a gametogenic approach

    Get PDF
    The taxonomic status and anatomy of Oxychilus (Atlantoxychilus) spectabilis (Milne-Edwards, 1885), an endemic land snail from Santa Maria Island, Azores, has been subject of detailed study, yet information about its life history is wanting. This study describes the reproductive cycle of O. (A.) spectabilis and assesses the validity of three morphometric shell parameters as maturation diagnostic characters. Our results indicate that individuals are reproductively more active from May to November. However, the availability of spermatozoa throughout the year and the residual values of mature oocytes during the remaining months seem to provide minimum conditions for reproduction all year round. The snail has a functional protandric tendency and gonadal maturation is initially triggered by photophase and after regulated by temperature. The positive correlation between gonadal maturation and morphometric shell characters indicate that these parameters might be a useful tool for the diagnosis of snail’s maturation

    Occurrence of Magellanic Penguins along the Northeast Brazilian Coast during 2008 Austral Winter

    Get PDF
    During the austral winter of 2008, thousands of penguins traveled to low latitudes along the South Atlantic coast of South America. The atmospheric and oceanic conditions from April to July 2008 may account for the penguins' unusual geographic distribution. During that period, South Atlantic coastal waters were cooler; the wind anomalies had northward and onshore components; the ocean's coastal region presented northward currents that favored the penguins to travel toward lower latitudes. This anomalous climate regime resulted from extreme meteorological frontal systems that occurred mainly during June 2008. Three consecutive extreme midlatitude cyclones produced strong wind shear that resulted in the northward oceanic flow along the South American eastern shoreline favoring the penguins to be spotted in northern tropical waters

    Antimicrobial Applications of Electroactive PVK-SWNT Nanocomposites

    Get PDF
    The antibacterial properties of a nanocomposite containing an electroactive polymer, polyvinyl-N-carbazole (PVK) (97 wt %), and single-walled carbon nanotubes (SWNT) (3 wt %) was investigated as suspensions in water and as thin film coatings. The toxic effects of four different PVK-SWNT (97:3 wt %) nanocomposite concentrations (1, 0.5, 0.05, and 0.01 mg/mL) containing 0.03, 0.015, 0.0015, and 0.0003 mg/mL of SWNT, respectively, were determined for planktonic cells and biofilms of Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis). The results showed that the nanocomposite PVK-SWNT had antibacterial activity on planktonic cells and biofilms at all concentration levels. Higher bacterial inactivation (94% for E. coli and 90% for B. subtilis) were achieved in planktonic cells at a PVK-SWNT concentration of 1 mg/mL. Atomic force microscopy (AFM) imaging showed significant reduction of biofilm growth on PVK-SWNT coated surfaces. This study established for the first time that the improved dispersion of SWNTs in aqueous solutions in the presence of PVK enhances the antimicrobial effects of SWNTs at very low concentrations. Furthermore, PVK-SWNT can be used as an effective thin film coating material to resist biofilm formation

    Cytogenetic studies of Brazilian pediatric myelodysplastic syndrome cases: challenges and difficulties in a large and emerging country

    Get PDF
    Myelodysplastic syndromes (MDS) and juvenile myelomonocytic leukemia (JMML) are rare hematopoietic stem cell diseases affecting children. Cytogenetics plays an important role in the diagnosis of these diseases. We report here the experience of the Cytogenetic Subcommittee of the Brazilian Cooperative Group on Pediatric Myelodysplastic Syndromes (BCG-MDS-PED). We analyzed 168 cytogenetic studies performed in 23 different cytogenetic centers; 84 of these studies were performed in patients with confirmed MDS (primary MDS, secondary MDS, JMML, and acute myeloid leukemia/MDS+Down syndrome). Clonal abnormalities were found in 36.9% of the MDS cases and cytogenetic studies were important for the detection of constitutional diseases and for differential diagnosis with other myeloid neoplasms. These data show the importance of the Cooperative Group for continuing education in order to avoid a late or wrong diagnosis.Univ São Paulo, Fac Med, Dept Hematol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Hematol, São Paulo, BrazilUniv São Paulo, Fac Med, Dept Hematol, Lab Citogenet, São Paulo, BrazilUniversidade Federal de São Paulo, Inst Oncol Pediat, São Paulo, BrazilUniv Estadual Paulista, Fac Med Botucatu, Dept Clin Med, Botucatu, SP, BrazilHosp Canc Barretos, Barretos, SP, BrazilCtr Tratamento Fabiana Macedo de Morais, Grp Assistencia Crianca Canc, Grp Cooperat Brasileiro Sindrome Mielodisplas Ped, Sao Jose Dos Campos, SP, BrazilUniversidade Federal de São Paulo, Dept Hematol, São Paulo, BrazilUniversidade Federal de São Paulo, Inst Oncol Pediat, São Paulo, BrazilWeb of Scienc
    corecore