73 research outputs found
Risco para depressão, ansiedade e alcoolismo entre trabalhadores informais
A OMS aponta que os transtornos mentais menores acometem cerca de 30% dos trabalhadores ocupados e os transtornos mentais graves, 5 a 10%. Esta pesquisa objetivou identificar o risco, o perfil sociodemográfico e os fatores de risco para depressão, ansiedade e alcoolismo entre 86 trabalhadores informais no município de João Pessoa - PB, no período de agosto de 2006 a outubro de 2007. Trata-se de um estudo individuado, observacional, de corte transversal. Os dados foram coletados através dos questionários SRQ-20, CAGE e de um questionário sobre fatores de risco da saúde mental. Para a análise, utilizou-se o software SPSS 15.0. O risco para depressão e ansiedade foi apresentado por 31,4% da amostra, e o risco para alcoolismo, por 24,4%. Os dados sociodemográficos comuns aos riscos estudados foram: predominância da idade de 21 a 40 anos e da renda mensal de um a três salários mínimos. Os fatores de risco sobrecarga de trabalho e tempo insuficiente para lazer foram associados aos riscos para depressão, ansiedade e alcoolismo. Ressalta-se a necessidade de elaboração de ações de saúde mental que minimizem o sofrimento desses trabalhadores, melhorando sua qualidade de vida. A terapia comunitária é indicada como uma ação de prevenção do adoecimento mental.
Descritores: Risco; Transtornos mentais; Saúde do trabalhador
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
Recommended from our members
Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests
The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter productivity measurements), their associated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonality in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rainfall is < 2000 mm yr⁻¹ (water-limited forests) and to radiation otherwise (light-limited forests). On the other hand, independent of climate limitations, wood productivity and litterfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosynthetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest productivity in a drier climate in water-limited forest, and in current light-limited forest with future rainfall < 2000 mm yr⁻¹
- …