19 research outputs found
Rho GTPases in Skeletal Muscle Development and Homeostasis.
Rho guanosine triphosphate hydrolases (GTPases) are molecular switches that cycle between an inactive guanosine diphosphate (GDP)-bound and an active guanosine triphosphate (GTP)-bound state during signal transduction. As such, they regulate a wide range of both cellular and physiological processes. In this review, we will summarize recent work on the role of Rho GTPase-regulated pathways in skeletal muscle development, regeneration, tissue mass homeostatic balance, and metabolism. In addition, we will present current evidence that links the dysregulation of these GTPases with diseases caused by skeletal muscle dysfunction. Overall, this information underscores the critical role of a number of members of the Rho GTPase subfamily in muscle development and the overall metabolic balance of mammalian species
Computational and in vitro Pharmacodynamics Characterization of 1A-116 Rac1 Inhibitor: Relevance of Trp56 in Its Biological Activity
In the last years, the development of new drugs in oncology has evolved notably. In particular, drug development has shifted from empirical screening of active cytotoxic compounds to molecularly targeted drugs blocking specific biologic pathways that drive cancer progression and metastasis. Using a rational design approach, our group has developed 1A-116 as a promising Rac1 inhibitor, with antitumoral and antimetastatic effects in several types of cancer. Rac1 is over activated in a wide range of tumor types and and it is one of the most studied proteins of the Rho GTPase family. Its role in actin cytoskeleton reorganization has effects on endocytosis, vesicular trafficking, cell cycle progression and cellular migration. In this context, the regulatory activity of Rac1 affects several key processes in the course of the cancer including invasion and metastasis. The purpose of this preclinical study was to focus on the mode of action of 1A-116, conducting an interdisciplinary approach with in silico bioinformatics tools and in vitro assays. Here, we demonstrate that the tryptophan 56 residue is necessary for the inhibitory effects of 1A-116 since this compound interferes with protein-protein interactions (PPI) of Rac1GTPase involving several GEF activators. 1A116 is also able to inhibit the oncogenic Rac1P29S mutant protein, one of the oncogenic drivers found in sun-exposed melanoma. It also inhibits numerous Rac1-regulated cellular processes such as membrane ruffling and lamellipodia formation. These results deepen our knowledge of 1A-116 inhibition of Rac1 and its biological impact on cancer progression. They also represent a good example of how in silico analyses represent a valuable approach for drug development.Fil: González, Nazareno. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Oncología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cardama, Georgina Alexandra. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Oncología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Chinestrad, Patricio Manuel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Farmacología Molecular; ArgentinaFil: Robles Valero, Javier. Universidad de Salamanca; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Rodríguez Fdez, Sonia. Universidad de Salamanca; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Lorenzo Martín, L. Francisco. Universidad de Salamanca; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Bustelo, Xosé R.. Universidad de Salamanca; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Lorenzano Menna, Pablo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Farmacología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gomez, Daniel Eduardo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Oncología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Vagal afferents contribute to sympathoexcitation-driven metabolic dysfunctions
Multiple crosstalk between peripheral organs and the nervous system are required to maintain physiological and metabolic homeostasis. Using Vav3-deficient mice as a model for chronic sympathoexcitation-associated disorders, we report here that afferent fibers of the hepatic branch of the vagus nerve are needed for the development of the peripheral sympathoexcitation, tachycardia, tachypnea, insulin resistance, liver steatosis and adipose tissue thermogenesis present in those mice. This neuronal pathway contributes to proper activity of the rostral ventrolateral medulla, a sympathoregulatory brainstem center hyperactive in Vav3−/− mice. Vagal afferent inputs are also required for the development of additional pathophysiological conditions associated with deregulated rostral ventrolateral medulla activity. By contrast, they are dispensable for other peripheral sympathoexcitation-associated disorders sparing metabolic alterations in liver.X R B is supported by grants from the Castilla-León Government (CSI252P18, CLC-2017-01), the Spanish Ministry of Science, Innovation and Universities (MSIU) (SAF2015-64556-R), Worldwide Cancer Research (14-1248), the Ramón Areces Foundation, and the Spanish Association against Cancer (GC16173472GARC). X R B’s institution is supported by the Programa de Apoyo a Planes Estratégicos de Investigación de Estructuras de Investigación de Excelencia of the Ministry of Education of the Castilla-León Government (CLC-2017-01). S R-F and L F L-M contracts have been supported by funding from the MISIU (BES-2013-063573) and the Spanish Ministry of Education, Culture and Sports (L F L-M, FPU13/02923), respectively. Both Spanish and Castilla-León government-associated funding is partially supported by the European Regional Development Fund
Defective extracellular matrix remodeling in brown adipose tissue is associated with fibro-inflammation and reduced diet-induced thermogenesis
© 2023 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).The relevance of extracellular matrix (ECM) remodeling is reported in white adipose tissue (AT) and obesity-related dysfunctions, but little is known about the importance of ECM remodeling in brown AT (BAT) function. Here, we show that a time course of high-fat diet (HFD) feeding progressively impairs diet-induced thermogenesis concomitantly with the development of fibro-inflammation in BAT. Higher markers of fibro-inflammation are associated with lower cold-induced BAT activity in humans. Similarly, when mice are housed at thermoneutrality, inactivated BAT features fibro-inflammation. We validate the pathophysiological relevance of BAT ECM remodeling in response to temperature challenges and HFD using a model of a primary defect in the collagen turnover mediated by partial ablation of the Pepd prolidase. Pepd-heterozygous mice display exacerbated dysfunction and BAT fibro-inflammation at thermoneutrality and in HFD. Our findings show the relevance of ECM remodeling in BAT activation and provide a mechanism for BAT dysfunction in obesity.This work is supported by the Wellcome strategic award (100574/Z/12/Z); MRC MDU: MC_UU_12012/2 and MC_UU_12012/5 (The Disease Model Core, Biochemistry Assay Lab, Histology Core, and the Genomics and Transcriptomics Core); the Wellcome grant 10953/Z/15/Z (I.S.); the Wellcome Cambridge Trust scholarship (E.F.-J.); the Spanish Ministry of Economy and Competitiveness (SAF2017-88908-R) and PT17/0009/0006 from the ISCIII (C.Ç. and J.D.B.); the Academy of Finland (grants 259926, 265204, 292839, 314456, and 335446), the Paulo Foundation, the Finnish Cultural Foundation Southwest Finland Regional Fund, the Turku University Hospital Research Funds, and the European Union (EUFP7 project 278373; DIABAT) (K.A.V. and M.U.-D.); the Fundación Ramón Areces (BEVP32P01S10090) and subsequently by a Sir Henry Wellcome postdoctoral fellowship (222748/Z/21/Z) (S.R.-F.); We thank the Wellcome-Trust Sanger Institute Mouse Genetics Project (Sanger MGP) and its funders for providing the mutant mouse line (Pepd<tm1a[KOMP]Wtsi). Funding and associated primary phenotypic information may be found at www.sanger.ac.uk/mouseportal.Peer reviewe
VAV2 signaling promotes regenerative proliferation in both cutaneous and head and neck squamous cell carcinoma
Regenerative proliferation capacity and poor differentiation are histological features usually linked to poor prognosis in head and neck squamous cell carcinoma (hnSCC). However, the pathways that regulate them remain ill-characterized. Here, we show that those traits can be triggered by the RHO GTPase activator VAV2 in keratinocytes present in the skin and oral mucosa. VAV2 is also required to maintain those traits in hnSCC patient-derived cells. This function, which is both catalysis- and RHO GTPase-dependent, is mediated by c-Myc- and YAP/TAZ-dependent transcriptomal programs associated with regenerative proliferation and cell undifferentiation, respectively. High levels of VAV2 transcripts and VAV2-regulated gene signatures are both associated with poor hnSCC patient prognosis. These results unveil a druggable pathway linked to the malignancy of specific SCC subtypes. The Rho signalling pathway is frequently activated in squamous carcinomas. Here, the authors find that the Rho GEF VAV2 is over expressed in both cutaneous and head and neck squamous cell carcinomas and that at the molecular level VAV2 promotes a pro-tumorigenic stem cell-like signalling programme
New Functions of Vav Family Proteins in Cardiovascular Biology, Skeletal Muscle, and the Nervous System
Vav proteins act as tyrosine phosphorylation-regulated guanosine nucleotide exchange factors for Rho GTPases and as molecular scaffolds. In mammals, this family of signaling proteins is composed of three members (Vav1, Vav2, Vav3) that work downstream of protein tyrosine kinases in a wide variety of cellular processes. Recent work with genetically modified mouse models has revealed that these proteins play key signaling roles in vascular smooth and skeletal muscle cells, specific neuronal subtypes, and glia cells. These functions, in turn, ensure the proper regulation of blood pressure levels, skeletal muscle mass, axonal wiring, and fiber myelination events as well as systemic metabolic balance. The study of these mice has also led to the discovery of new physiological interconnection among tissues that contribute to the ontogeny and progression of different pathologies such as, for example, hypertension, cardiovascular disease, and metabolic syndrome. Here, we provide an integrated view of all these new Vav family-dependent signaling and physiological functions
New insights into the Vav1 activation cycle in lymphocytes
Vav1 is a hematopoietic-specific Rho GDP/GTP exchange factor and signaling adaptor. Although these activities are known to be stimulated by direct Vav1 phosphorylation, little information still exists regarding the regulatory layers that influence the overall Vav1 activation cycle. Using a collection of cell models and activation-mimetic Vav1 mutants, we show here that the dephosphorylated state of Vav1 in nonstimulated T cells requires the presence of a noncatalytic, phospholipase Cγ1–Slp76-mediated inhibitory pathway. Upon T cell stimulation, Vav1 becomes rapidly phosphorylated via the engagement of Lck and, to a much lesser extent, other Src family kinases and Zap70. In this process, Lck, Zap70 and the adaptor protein Lat contribute differently to the dynamics and amplitude of the Vav1 phosphorylated pool. Consistent with a multiphosphosite activation mechanism, the optimal stimulation of Vav1 can only be recapitulated by the combination of several activation-mimetic phosphosite mutants. The analysis of these mutants has also unveiled the presence of different Vav1 signaling competent states that are influenced by phosphosites present in the N- and C-terminal domains of the protein.X.R.B. is supported by grants from the Castilla-León Government (BIO/SA01/15, CSI049U16), Spanish Ministry of Economy and Competitiveness (MINECO) (SAF2015-64556-R), Worldwide Cancer Research (14-1248), Ramón Areces Foundation, and Spanish Society against Cancer (GC16173472GARC). M.B. and S.R-F. salaries have been supported by a JAE-Predoc (CSIC) and MINECO FPI (BES-2013-063573) contracts for graduate students, respectively. Funding from MINECO is partially contributed by the European Regional Development Fund.Peer Reviewe
RAS GTPase-dependent pathways in developmental diseases: old guys, new lads, and current challenges
Deregulated RAS signaling is associated with increasing numbers of congenital diseases usually referred to as RASopathies. The spectrum of genes and mutant alleles causing these diseases has been significantly expanded in recent years. This progress has triggered new challenges, including the origin and subsequent selection of the mutations driving these diseases, the specific pathobiological programs triggered by those mutations, the type of correlations that exist between the genotype and the clinical features of patients, and the ancillary genetic factors that influence the severity of the disease in patients. These issues also directly impinge on the feasibility of using RAS pathway drugs to treat RASopathy patients. Here, we will review the main developments and pending challenges in this research topic.The authors wish to apologize to scientists who have not been cited in this work due to space constraints. XRB work is supported by grants from the Castilla-León Government (CSI049U16), Spanish Ministry of Economy and Competitiveness (SAF2015-64556-R), Worldwide Cancer Research (14-1248), Ramón Areces Foundation, and Spanish Society against Cancer (GC16173472GARC). PC work is supported by grants from both the Spanish Ministry of Economy and Competitiveness (SAF-2015 63638R) and the Spanish Society against Cancer (GCB141423113). Funding from Spanish national and regional governments to both XRB and PC is partially contributed by the European Regional Development Fund
Lysine Acetylation Reshapes the Downstream Signaling Landscape of Vav1 in Lymphocytes
© 2020 by the authorsVav1 works both as a catalytic Rho GTPase activator and an adaptor molecule. These functions, which are critical for T cell development and antigenic responses, are tyrosine phosphorylation-dependent. However, it is not known whether other posttranslational modifications can contribute to the regulation of the biological activity of this protein. Here, we show that Vav1 becomes acetylated on lysine residues in a stimulation- and SH2 domain-dependent manner. Using a collection of both acetylation- and deacetylation-mimicking mutants, we show that the acetylation of four lysine residues (Lys222, Lys252, Lys587, and Lys716) leads to the downmodulation of the adaptor function of Vav1 that triggers the stimulation of the nuclear factor of activated T cells (NFAT). These sites belong to two functional subclasses according to mechanistic criteria. We have also unveiled additional acetylation sites potentially involved in either the stimulation (Lys782) or the downmodulation (Lys335, Lys374) of specific Vav1-dependent downstream responses. Collectively, these results indicate that Nε-lysine acetylation can play variegated roles in the regulation of Vav1 signaling. Unlike the case of the tyrosine phosphorylation step, this new regulatory layer is not conserved in other Vav family paralogs.X.R.B. is supported by grants from the Castilla-León Government (CLC-2017-01), the Spanish Ministry of Science, Innovation, and Universities (MSIU) (RTI2018-096481-B-I00), and the Spanish Association against Cancer (GC16173472GARC). X.R.B.’s institution is supported by the Programa de Apoyo a Planes Estratégicos de Investigación de Estructuras de Investigación de Excelencia of the Ministry of Education of the Castilla-León Government (CLC-2017-01). S.R.-F. and L.F.L.-M. contracts have been supported by funding from the MISIU (S.R.-F., BES-2013-063573), the Spanish Ministry of Education, Culture, and Sports (L.F.L.-M., FPU13/02923), and the CLC-2017-01 grant (S.R.-F. and L.F.L.-M.). L.F.-N. is supported by the Salamanca local section of the Spanish Association for Cancer Research. Both Spanish and Castilla-León government-associated funding is partially supported by the European Regional Development Fund
New functions of vav family proteins in cardiovascular biology, skeletal muscle, and the nervous system
© 2021 by the authors.Vav proteins act as tyrosine phosphorylation-regulated guanosine nucleotide exchange factors for Rho GTPases and as molecular scaffolds. In mammals, this family of signaling proteins is composed of three members (Vav1, Vav2, Vav3) that work downstream of protein tyrosine kinases in a wide variety of cellular processes. Recent work with genetically modified mouse models has revealed that these proteins play key signaling roles in vascular smooth and skeletal muscle cells, specific neuronal subtypes, and glia cells. These functions, in turn, ensure the proper regulation of blood pressure levels, skeletal muscle mass, axonal wiring, and fiber myelination events as well as systemic metabolic balance. The study of these mice has also led to the discovery of new physiological interconnection among tissues that contribute to the ontogeny and progression of different pathologies such as, for example, hypertension, cardiovascular disease, and metabolic syndrome. Here, we provide an integrated view of all these new Vav family-dependent signaling and physiological functions.X.R.B. has received funding from “la Caixa” Banking Foundation (HR20-00164), the Castilla-León autonomous government (CSI145P20, CLC-2017-01), the Spanish Ministry of Science and Innovation (MSI) (RTI2018-096481-B-100), and the Spanish Association against Cancer (GC16173472GARC). X.R.B.’s institution is supported by the Programa de Apoyo a Planes Estratégicos de Investigación de Estructuras de Investigación de Excelencia of the Castilla-León autonomous government (CLC-2017-01). S.R.-F. and L.F.L.-M. contracts have mostly been supported by funding from the MSI (BES-2013-063573) and the Spanish Ministry of Education, Culture and Sports (L.F.L.-M., FPU13/02923), respectively. Subsequently, they were both supported by the CLC-2017-01 grant. Both Spanish and Castilla-León government-associated funding is partially supported by the European Regional Development Fund