3,369 research outputs found

    The HIHI- and H2H_{2}-to-stellar mass correlations of late- and early-type galaxies and their consistency with the observational mass functions

    Get PDF
    We compile and carrefully homogenize local galaxy samples with available information on stellar, HI\rm HI and/or H2\rm H_{2} masses, and morphology. After processing the information on upper limits in the case of non gas detections, we determine the HI\rm HI- and H2\rm H_{2}-to-stellar mass relations and their 1σ1\sigma scatter for both late- and early-type galaxies. The obtained relations are fitted to single or double power laws. Late-type galaxies are significantly gas richer than early-type ones, specially at high masses. The respective H2\rm H_{2}-to-HI\rm HI mass ratios as a function of MM_{\ast} are discussed. Further, we constrain the full mass-dependent distribution functions of the HI\rm HI- and H2\rm H_{2}-to-stellar mass ratios. We find that they can be described by a Schechter function for late types and a (broken) Schechter + uniform function for early types. By using the observed galaxy stellar mass function and the volume-complete late-to-early-type galaxy ratio as a function of MM_{\ast}, these empirical distribution functions are mapped into HI\rm HI and H2\rm H_{2} mass functions. The obtained mass functions are consistent with those inferred from large surveys. The empirical gas-to-stellar mass relations and their distributions for local late- and early-type galaxies presented here can be used to constrain models and simulations of galaxy evolution.Comment: 43 pages, 18 figures, to appear in RMxAA. Minor corrections introduced. The presented results are optimal for comparisons with theoretical predictions. Py-code to generate the HI- and H2-to-stellar mass relations and their 1sigma scatter, as well as the full mass-dependent distribution functions of the MHI/Ms and MH2/Ms ratios are available upon request to A.R. Calett

    A Multiple System of Radio Sources at the Core of the L723 Multipolar Outflow

    Full text link
    We present high angular resolution Very Large Array multi-epoch continuum observations at 3.6 cm and 7 mm towards the core of the L723 multipolar outflow revealing a multiple system of four radio sources suspected to be YSOs in a region of only ~4 arcsecs (1200 AU) in extent. The 3.6 cm observations show that the previously detected source VLA 2 contains a close (separation ~0.29 arcsecs or ~90 AU) radio binary, with components (A and B) along a position angle of ~150 degrees. The northern component (VLA 2A) of this binary system is also detected in the 7 mm observations, with a positive spectral index between 3.6 cm and 7 mm. In addition, the source VLA 2A is associated with extended emission along a position angle of ~115 degrees, that we interpret as outflowing shock-ionized gas that is exciting a system of HH objects with the same position angle. A third, weak 3.6 cm source, VLA 2C, that is detected also at 7 mm, is located ~0.7 arcsecs northeast of VLA 2A, and is possibly associated with the water maser emission in the region. The 7 mm observations reveal the presence of an additional source, VLA 2D, located ~3.5 arcsecs southeast of VLA 2A, and with a 1.35 mm counterpart. All these radio continuum sources have a positive spectral index, compatible with them being YSOs. We also propose that the high velocity CO emission observed in the region could be the superposition of multiple outflows (at least three independent bipolar outflows) excited by the YSOs located at the core, instead of the previous interpretations in terms of only one or two outflows.Comment: Accepted for publication in The Astrophysical Journal (2007 December 6

    Simultaneous X-ray and radio observations of Young Stellar Objects in NGC 1333 and IC 348

    Full text link
    Young Stellar Objects (YSOs) and in particular protostars are known to show a variety of high-energy processes. Observations in the X-ray and centimetric radio wavelength ranges are thought to constrain some of these processes, e.g., coronal-type magnetic activity. There is a well-known empirical correlation of radio and X-ray luminosities in active stars, the so-called Guedel-Benz relation. Previous evidence whether YSOs are compatible with this relation remains inconclusive for the earliest evolutionary stages. The main difficulty is that due to the extreme variability of these sources, simultaneous observations are essential. Until now, only few YSOs and only a handful of protostars have been observed simultaneously in the X-ray and radio range. To expand the sample, we have obtained such observations of two young clusters rich in protostars, NGC 1333 and IC 348. While the absolute sensitivity is lower for these regions than for more nearby clusters like CrA, we find that even in deep continuum observations carried out with the NRAO Very Large Array, the radio detection fraction for protostars in these clusters is much lower than the X-ray detection fraction. Very few YSOs are detected in both bands, and we find the radio and X-ray populations among YSOs to be largely distinct. We combine these new results with previous simultaneous Chandra and VLA observations of star-forming regions and find that YSOs with detections in both bands appear to be offset toward higher radio luminosities for given X-ray luminosities when compared to the Guedel-Benz relation, although even in this sensitive dataset most sources are too weak for the radio detections to provide information on the emission processes. The considerably improved sensitivity of the Expanded Very Large Array will provide a better census of the YSO radio population as well as better constraints on the emission mechanisms.Comment: Accepted for publication in Ap
    corecore