27,989 research outputs found

    Polydispersity Effects in the Dynamics and Stability of Bubbling Flows

    Full text link
    The occurrence of swarms of small bubbles in a variety of industrial systems enhances their performance. However, the effects that size polydispersity may produce on the stability of kinematic waves, the gain factor, mean bubble velocity, kinematic and dynamic wave velocities is, to our knowledge, not yet well established. We found that size polydispersity enhances the stability of a bubble column by a factor of about 23% as a function of frequency and for a particular type of bubble column. In this way our model predicts effects that might be verified experimentally but this, however, remain to be assessed. Our results reinforce the point of view advocated in this work in the sense that a description of a bubble column based on the concept of randomness of a bubble cloud and average properties of the fluid motion, may be a useful approach that has not been exploited in engineering systems.Comment: 11 pages, 2 figures, presented at the 3rd NEXT-SigmaPhi International Conference, 13-18 August, 2005, Kolymbari, Cret

    Inner and outer star forming regions over the disks of spiral galaxies. I. Sample characterization

    Full text link
    Context. The knowledge of abundance distributions is central to understanding the formation and evolution of galaxies. Most of the relations employed for the derivation of gas abundances have so far been derived from observations of outer disk HII regions, despite the known differences between inner and outer regions. Aims. Using integral field spectroscopy (IFS) observations we aim to perform a systematic study and comparison of two inner and outer HII regions samples. The spatial resolution of the IFS, the number of objects and the homogeneity and coherence of the observations allow a complete characterization of the main observational properties and differences of the regions. Methods. We analyzed a sample of 725 inner HII regions and a sample of 671 outer HII regions, all of them detected and extracted from the observations of a sample of 263 nearby, isolated, spiral galaxies observed by the CALIFA survey. Results. We find that inner HII regions show smaller equivalent widths, greater extinction and luminosities, along with greater values of [NII]{\lambda}6583/H{\alpha} and [OII]{\lambda}3727/[OIII]{\lambda}5007 emission-line ratios, indicating higher metallicites and lower ionization parameters. Inner regions have also redder colors and higher photometric and ionizing masses, although Mion/Mphot is slighty higher for the outer regions. Conclusions. This work shows important observational differences between inner and outer HII regions in star forming galaxies not previously studied in detail. These differences indicate that inner regions have more evolved stellar populations and are in a later evolution state with respect to outer regions, which goes in line with the inside-out galaxy formation paradigm.Comment: 16 page

    Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes

    Get PDF
    Spin and orbital angular momenta (AM) of light are well studied for free-space electromagnetic fields, even nonparaxial. One of the important applications of these concepts is the information transfer using AM modes, often via optical fibers and other guiding systems. However, the self-consistent description of the spin and orbital AM of light in optical media (including dispersive and metallic cases) was provided only recently [K.Y. Bliokh et al., Phys. Rev. Lett. 119, 073901 (2017)]. Here we present the first accurate calculations, both analytical and numerical, of the spin and orbital AM, as well as the helicity and other properties, for the full-vector eigenmodes of cylindrical dielectric and metallic (nanowire) waveguides. We find remarkable fundamental relations, such as the quantization of the canonical total AM of cylindrical guided modes in the general nonparaxial case. This quantization, as well as the noninteger values of the spin and orbital AM, are determined by the generalized geometric and dynamical phases in the mode fields. Moreover, we show that the spin AM of metallic-wire modes is determined, in the geometrical-optics approximation, by the transverse spin of surface plasmon-polaritons propagating along helical trajectories on the wire surface. Our work provides a solid platform for future studies and applications of the AM and helicity properties of guided optical and plasmonic waves.Comment: 12 pages, 4 figures, to appear in Optic

    Ejection of a Low Mass Star in a Young Stellar System in Taurus

    Full text link
    We present the analysis of high angular resolution VLA radio observations, made at eleven epochs over the last 20 years, of the multiple system T Tauri. One of the sources (Sb) in the system has moved at moderate speed (5-10 km/s), on an apparently elliptical orbit during the first 15 years of observations, but after a close (< 2 AU) encounter with the source Sa, it appears to have accelerated westward to about 20 km/s in the last few years. Such a dramatic orbital change most probably indicates that Sb has just suffered an ejection - which would be the first such event ever detected. Whether Sb will ultimately stay on a highly elliptical bound orbit, or whether it will leave the system altogether will be known with about five more years of observations.Comment: 4 pages, accepter in ApJ Letter
    • …
    corecore