27 research outputs found
Air flow humidification for air-assisted boom sprayer
The air-assisted ground spray is fairly widespread. However, due to the unpredictable weather conditions, the operational efficiency is impaired by stops on grounds of low humidity and high temperatures. The aim of this work was to assess an air humidification method and evaluate its impact on temperature and air humidity for the air curtain of the air-assisted sprayer. With respect to relative air humidity, it has increased in 6.59%, being the maximum change when inserting 1.92 L min-1. So, it is concluded that the pipeline humidification might significantly reduce temperature and enhance air humidity. The treatments performed in this study consisted of a varied flow of a humidity device, related to weather conditions. Temperature and relative air humidity were measured at 1.0 m height from right to left of middle point of the machine, corresponding to the end of the spray boom, in the middle and end of right spray boom. The readings were also performed at three different distances from the end of the pipeline and at 0.25 and 0.50 m from that to the soil. The results show that 0.48 L min-1 in the humidification system has promoted a better efficiency in reducing air-temperature, on average 2.52 ºC when compared to the non-humidified one.A aplicação terrestre com assistência de ar é bastante difundida. Entretanto, devido às variações climáticas, o rendimento operacional é prejudicado pelas paradas devido à baixa umidade relativa do ar e a altas temperaturas. O objetivo do trabalho foi pesquisar uma forma de umidificar o ar e avaliar a interferência desta umidificação na temperatura e umidade relativa do ar na cortina de vento em pulverizador com assistência de ar. Os tratamentos corresponderam a diferentes vazões de um dispositivo de umidificação, relacionados às condições climáticas. Foram realizadas leituras de temperatura e umidade relativa a 1,0 m para a direita e para a esquerda, do centro da máquina, correspondendo às extremidades da barra central, no centro e na extremidade da barra direita. As leituras foram realizadas, também, em três distâncias na saída da canaleta, sendo uma na saída do ar da canaleta e a 0,25 e 0,50 m da mesma, em sentido ao solo. Os resultados mostraram que a vazão de 0,48 L min-1 no sistema de umidificação proporcionou melhor eficiência em relação à redução da temperatura do ar, apresentando redução média de 2,52 ºC comparado à barra assistida a ar sem umidificação. Já a umidade relativa do ar aumentou em 6,59%, sendo esta a alteração máxima da umidificação injetando 1,92 L min-1. Conclui-se, assim, que a umidificação no duto de ar reduz a temperatura e aumenta a umidade relativa do ar de maneira significativa.UNESP FCA Depto. de Eng. RuralUNESP FCA Departamento de Engenharia RuralUNESP FCA Depto. de Eng. RuralUNESP FCA Departamento de Engenharia Rura
KNOWLEDGE ON ADJUVANT PROPERTIES, DISPOSAL OF PESTICIDERESIDUES AND SPRAY DRIFT OCCURRENCE IN THE STATE OF MATO GROSSO
ABSTRACT This paper aimed at investigating the knowledge level of people working on pesticide spraying activities concerning spray adjuvant properties, as well as collecting information on disposal locations for residues from internal spray tank cleaning, and finally the understanding of pesticide spray drift occurrence in the state of Mato Grosso, Brazil. The information was gathered through a questionnaire answered by participants of a rural extension program in application technology located in nineteen grain and fiber producing regions of Mato Grosso state. Among the mentioned adjuvants, 49.0% belonged to the mineral oil class and 17.9% of participants did not know the functions performed by such products. In addition, 58.5% of the participants discarded residues into the field. Among the participants who answered the question about spray drift occurrence causes, 54.1% indicated problems relating to inadequate weather conditions. In conclusion, there is a lack of knowledge on adjuvant functions, besides of inappropriate residue disposal in the state of Mato Grosso. Spray drift was referred as a problem; however, most of participants were not able to discuss the causes of these losses
Effect of working pressure at different spray nozzles on drift quantification in wind tunnel
Each year, there is an increase in pesticide consumption and in its importance of use in the large-scale agricultural production, being fundamental the knowledge of application technology to the activity success. The objective of the present study was to evaluate the influence of working pressure on the drift generated by different spray nozzles, assessed in wind tunnel. The treatments were composed of two spray nozzles AXI 110015 and AXI 11002 with pressure levels of 276 and 414 kPa. The spray solution was composed by water and NaCl at 10%. The applications were conducted at wind speed of 2.0 m s-1, being the drift collected at 5.0; 10.0 and 15.0 m away from the spray boom and at heights of 0.2; 0.4; 0.6; 0.8 e 1.0 m from the tunnel floor. To both spray nozzles, the greatest drift was collected at the smallest distance to the spray-boom and at the lowest height. The AXI 11002 nozzle gave a smaller drift relative to the AXI 110015 nozzle for the two tested pressures and for all the collection points. Regardless of the nozzle, a rise in the working pressure increases the spray drift percentage at all distances in the wind tunnel.A cada ano, há um aumento no consumo e na importância do uso de agrotóxicos na produção agrícola em alta escala, sendo fundamental o conhecimento da tecnologia de aplicação para o sucesso da atividade. O objetivo deste trabalho foi avaliar a influência da pressão de trabalho sobre a deriva gerada por diferentes pontas de pulverização, avaliada em túnel de vento. Os tratamentos foram compostos por duas pontas de pulverização: AXI 110015 e AXI 11002, nas pressões de 276 e 414 kPa. A calda de pulverização foi composta por água e NaCl a 10%. As aplicações foram realizadas com velocidade de vento de 2,0 m s-1, sendo a deriva coletada a 5,0; 10,0 e 15,0 m de distância da barra de pulverização e nas alturas de 0,2; 0,4; 0,6; 0,8 e 1,0 m em relação ao piso do túnel. Para as duas pontas de pulverização, a maior deriva coletada ocorreu na menor distância em relação à barra de pulverização e na menor altura em relação ao piso do túnel. O modelo de ponta AXI 11002 apresenta menor porcentagem de deriva coletada em relação ao modelo AXI 110015, para as duas pressões testadas e em todos os pontos de coleta. Independentemente da ponta, o aumento da pressão de trabalho aumenta a porcentagem de deriva em todas as distâncias de coleta realizadas no túnel de vento.UENP Depto. de Engenharia e Desenvolvimento AgrárioUNESP Departamento de Engenharia RuralUENP Departamento de Engenharia e Desenvolvimento AgrárioUNESP Departamento de Engenharia Rura
Effect of adjuvants on the amount of air included in droplets generated by spray nozzles
The air included in droplets generated by spray nozzles directly int0erferes in transport, deposition and retention of the droplets after its impact on the target. The objective of this study was to analyze the interference of adjuvants in the amount of air included in droplets generated by spray nozzles. The treatments were composed by four spray solutions containing mineral oil, vegetable oil, surfactant and water, and three spray nozzles, two air induction type and one pre-orifice. The air included was calculated by the difference between the volume of spray mix (air plus liquid) and only the liquid, which was made by means of sprayed samples captured in a funnel and collected in a graduated cylinder. The surface tension was estimated by the gravimetric method using a precision scale and a graduated pipette. The surfactant provided the largest percentage of air included in the spray. For the surface tension, the mineral oil and the surfactant had the lowest values. It was concluded that the use of adjuvants had a direct influence on the percentage of air included. In addition, products with greater ability to reduce surface tension and to form homogeneous solutions provided the increase in the percentage of air included in the droplet.O ar incluído em gotas geradas por pontas de pulverização interfere diretamente em seu transporte e deposição, influenciando também na retenção das mesmas após o impacto no alvo. O objetivo deste trabalho foi verificar a interferência de adjuvantes na quantidade de ar incluído em gotas geradas por pontas de pulverização. Os tratamentos utilizados corresponderam a soluções contendo: óleo mineral, óleo vegetal, surfatante e água, aplicados com três tipos de pontas de pulverização, sendo duas com indução de ar e uma com pré-orifício. O ar incluído foi calculado através da diferença entre o volume da mistura pulverizada (ar mais líquido) e apenas o líquido, que foi feito por meio de amostras pulverizadas, capturadas em um funil e coletadas em proveta graduada. A tensão superficial foi estimada através do método gravimétrico, utilizando uma balança de precisão e uma bureta graduada. O surfatante foi o que proporcionou maior porcentagem de ar incluído na pulverização. Para a tensão superficial, as caldas contendo óleo mineral e o surfatante tiveram os menores valores. Os resultados mostraram que o uso de adjuvantes tem influência direta na porcentagem de ar incluído. Além disso, adjuvantes com maior capacidade de redução da tensão superficial e que formam misturas mais homogêneas proporcionaram aumento da porcentagem de ar incluído nas gotas pulverizadas.UNESP FCA Depto. de Engenharia RuralUniversidade Estadual Paulista Faculdade de Ciências Agronômicas Depto. de Engenharia RuralUniversidade Estadual do Norte do ParanáUNESP FCA Depto. de Engenharia RuralUniversidade Estadual Paulista Faculdade de Ciências Agronômicas Depto. de Engenharia Rura
Challenges of Aircraft and Drone Spray Applications
Crop protection on major crops is now required to follow the principles of integrated pest management so the timing and accuracy of any application of a pesticide or biopesticide has to be more precise to minimize adverse effects on non-target species. The development of UAVs (unmanned
aerial vehicles) provides a means of providing a more targeted application of the correct dose, especially by using formulations that are more persistent, thus minimizing loss of spray in areas subject to rain. Avoiding use of too high a dosage allows greater survival of natural enemies and
reduces the selection pressure for pests becoming resistant to specific modes of action. The downward flow of air from a UAV should also provide better distribution and impaction of droplets within a crop canopy, reduce soil impaction caused by taking heavy loads of spray applied with 200
l ha–1 of water, and allow treatments when fields are too wet to access with ground equipment. In Asia, many smallholder farmers are using a drone in preference to using a knapsack sprayer. According to Matthews, it has been shown that ULV spraying can be effective, but it
needs a narrow droplet spectrum with the droplets remaining stable and not shrinking to become too small. Formulation research can reduce the volatility of the spray, hence the success of oil-based sprays. However, instead of petroleum-based oils, there is a chance to develop vegetable oil
carriers with micro-sized particle suspensions to deliver low toxicity pesticides in droplets that can be deposited within the crop and not drift beyond the crop boundary. Oil deposits will be less prone to loss after rain so less should be lost in neighbouring ditches and water courses, especially
as rainfall patterns are forecast to change. More studies are needed to evaluate the swath for deposition, buffer zones, formulation, nozzle selection, to guide future specific legislation for UAV applications.</jats:p
Challenges of aircraft and drone spray applications
Crop protection on major crops is now required to follow the principles of integrated pest management so the timing and accuracy of any application of a pesticide or biopesticide has to be more precise to minimize adverse effects on non-target species. The development of UAVs (unmanned aerial vehicles) provides a means of providing a more targeted application of the correct dose, especially by using formulations that are more persistent, thus minimizing loss of spray in areas subject to rain. Avoiding use of too high a dosage allows greater survival of natural enemies and reduces the selection pressure for pests becoming resistant to specific modes of action. The downward flow of air from a UAV should also provide better distribution and impaction of droplets within a crop canopy, reduce soil impaction caused by taking heavy loads of spray applied with 200 l ha–1 of water, and allow treatments when fields are too wet to access with ground equipment. In Asia, many smallholder farmers are using a drone in preference to using a knapsack sprayer. According to Matthews, it has been shown that ULV spraying can be effective, but it needs a narrow droplet spectrum with the droplets remaining stable and not shrinking to become too small. Formulation research can reduce the volatility of the spray, hence the success of oil-based sprays. However, instead of petroleum-based oils, there is a chance to develop vegetable oil carriers with micro-sized particle suspensions to deliver low toxicity pesticides in droplets that can be deposited within the crop and not drift beyond the crop boundary. Oil deposits will be less prone to loss after rain so less should be lost in neighbouring ditches and water courses, especially as rainfall patterns are forecast to change. More studies are needed to evaluate the swath for deposition, buffer zones, formulation, nozzle selection, to guide future specific legislation for UAV applications.AgroEfetivaSao Paulo State University UNESPSao Paulo State University UNES
Potential of adjuvants to reduce drift in agricultural spraying
The reduction of pesticide spraying drift is still one of the major challenges in Brazilian agriculture. The aim of this study was to evaluate the potential of different adjuvant products, such as surfactants, drift retardants, mineral oil and vegetable oil for reducing drift in agricultural spraying. The experiment consisted of quantifying drift of sprayings of 18 adjuvants dissolved in water under controlled conditions in a wind tunnel. Tests were performed in triplicates with spraying nozzles type Teejet XR8003 VK, pressure of 200kPa and medium drops. Solutions sprayed were marked with Brilliant Blue dye at 0.6% (m v-1). The drift was collected using polyethylene strips transversally fixed along the tunnel at different distances from the nozzle and different heights from the bottom part of the tunnel. Drift deposits were evaluated by spectrophotometry in order to quantify deposits. The adjuvants from chemical groups of mineral oil and drift retardant resulted in lower values of drift in comparison with surfactants and water. The results obtained in laboratory show that the selection of appropriate class and concentration of adjuvants can significantly decrease the risk of drift in agricultural spraying. However, the best results obtained in laboratory should be validated with pesticide under field conditions in the future
