2,852 research outputs found

    Gamow-Teller strength distributions for double-beta-decaying nuclei within continuum-QRPA

    Full text link
    A version of the pn-continuum-QRPA is outlined and applied to describe the Gamow-Teller strength distributions for ββ\beta\beta-decaying open-shell nuclei. The calculation results obtained for the pairs of nuclei 116^{116}Cd-Sn and 130^{130}Te-Xe are compared with available experimental data.Comment: 8 pages, 3 figures, To appear in the proceedings of "Nucleus-2007: Fundamental problems of nuclear physics, atomic power engineering and nuclear technologies" Voronezh, Russia, June 25-29, 200

    Phosphorene nanoribbons

    Full text link
    Edge-induced gap states in finite phosphorene layers are examined using analytical models and density functional theory. The nature of such gap states depends on the direction of the cut. Armchair nanoribbons are insulating, whereas nanoribbons cut in the perpendicular direction (with zigzag and cliff-type edges) are metallic, unless they undergo a reconstruction or distortion with cell doubling, which opens a gap. All stable nanoribbons with unsaturated edges have gap states that can be removed by hydrogen passivation. Armchair nanoribbon edge states decay exponentially with the distance to the edge and can be described by a nearly-free electron model

    Strain-induced gauge and Rashba fields in ferroelectric Rashba lead chalcogenide PbX monolayers (X = S, Se, Te)

    Full text link
    One of the exciting features of two-dimensional (2D) materials is their electronic and optical tunability through strain engineering. Previously, we found a class of 2D ferroelectric Rashba semiconductors PbX (X = S, Se, Te) with tunable spin-orbital properties. In this work, based on our previous tight-binding (TB) results, we derive an effective low-energy Hamiltonian around the symmetry points that captures the effects of strain on the electronic properties of PbX. We find that strains induce gauge fields which shift the Rashba point and modify the Rashba parameter. This effect is equivalent to the application of in-plane magnetic fields. The out-of-plane strain, which is proportional to the electric polarization, is also shown to modify the Rashba parameter. Overall, our theory connects strain and spin splitting in ferroelectric Rashba materials, which will be important to understand the strain-induced variations in local Rashba parameters that will occur in practical applications

    Two-dimensional square buckled Rashba lead chalcogenides

    Full text link
    We propose the lead sulphide (PbS) monolayer as a two-dimensional semiconductor with a large Rashba-like spin-orbit effect controlled by the out-of-plane buckling. The buckled PbS conduction band is found to possess Rashba-like dispersion and spin texture at the M and Γ points, with large effective Rashba parameters of λ∼5 eV Å and λ∼1 eV Å, respectively. Using a tight-binding formalism, we show that the Rashba effect originates from the very large spin-orbit interaction and the hopping term that mixes the in-plane and out-of-plane p orbitals of Pb and S atoms. The latter, which depends on the buckling angle, can be controlled by applying strain to vary the spin texture as well as the Rashba parameter at Γ and M. Our density functional theory results together with tight-binding formalism provide a unifying framework for designing Rashba monolayers and for manipulating their spin properties.P.Z.H., H.S.P., and D.K.C. acknowledge the support of the Physics and Mechanical Engineering Department at Boston University. P.Z.H. is grateful for the hospitality of the NUS Centre for Advanced 2D Materials and Graphene Research Centre where this work was initiated. D.K.C. acknowledges the hospitality of the Aspen Center for Physics, which is supported by the US National Science Foundation Grant No. PHY-1607611. A.S.R., A.C.,and A.H.C.N. acknowledge support by the National Research Foundation, Prime Minister Office, Singapore, under its Medium Sized Centre Programme and CRP award "Novel 2D materials with tailored properties: Beyond graphene" (Grant No. R-144-000295-281). (Physics and Mechanical Engineering Department at Boston University; PHY-1607611 - US National Science Foundation; R-144-000295-281 - National Research Foundation, Prime Minister Office, Singapore, under its Medium Sized Centre Programme and CRP award "Novel 2D materials with tailored properties: Beyond graphene")Published versio
    • …
    corecore