6,415 research outputs found
Erodibility of hill peat
peer-reviewedThe project was funded by the European Union Structural Funds EAGGF distributed under the Department of Agriculture and Food Stimulus Fund.The energy necessary to entrain soil in water depends on the soil strength. Once entrained, the settling velocity of the eroded soil in water is of fundamental importance to the processes of sediment transport and deposition. In this paper, stream power theory and transport concepts coupled with the equation of continuity were used to derive a transport-limited peat concentration. The ratio of the log of the actual sediment concentration in surface run-off to the log of the transport-limited sediment concentration was the index of erosion used. The value of this index is a measure of the sensitivity of peat to erosion by sheet flow. Four peats were subjected to a range of overland flow rates under two slopes in a laboratory flume. The peats represented peat farmed in a sustainable manner (Leenane), overgrazed peat (Maam), peat undergoing erosion (Newport) and peat which had undergone weathering following exposure by a landslip (Croagh Patrick). Both in situ and surface damaged slabs were studied. The results indicate that shearing and remoulding of a wet peat surface (e.g., by animal treading) and weathering of exposed drained peat surfaces predispose peat to erosion. Defoliation by overgrazing is considered to be of secondary importance.Department of Agriculture, Food and the MarineEuropean Union Structural Funds EAGG
Synthetic 26Al emission from galactic-scale superbubble simulations
© 2019 The Author(s).Emission from the radioactive trace element 26Al has been observed throughout the Milky Way with the COMPTEL and INTEGRAL satellites. In particular the Doppler shifts measured with INTEGRAL connect 26Al with superbubbles, which may guide 26Al flows off spiral arms in the direction of Galactic rotation. In order to test this paradigm, we have performed galaxy-scale simulations of superbubbles with 26Al injection in a Milky Way-type galaxy. We produce all-sky synthetic ray emission maps of the simulated galaxies. We find that the 1809keV emission from the radioactive decay of 26Al is highly variable with time and the observer's position. This allows us to estimate an additional systematic variability of 0.2dex for a star formation rate derived from 26Al for different times and measurement locations in Milky Way-type galaxies. High-latitude morphological features indicate nearby emission with correspondingly high integrated gamma-ray intensities. We demonstrate that the 26Al scale height from our simulated galaxies depends on the assumed halo gas density. We present the first synthetic 1809keV longitude-velocity diagrams from 3D hydrodynamic simulations. The line-of-sight velocities for 26Al can be significantly different from the line-of-sight velocities associated with the cold gas. Over time, 26Al velocities consistent with the INTEGRAL observations, within uncertainties, appear at any given longitude, broadly supporting previous suggestions that 26Al injected into expanding superbubbles by massive stars may be responsible for the high velocities found in the INTEGRAL observations. We discuss the effect of systematically varying the location of the superbubbles relative to the spiral arms.Peer reviewedFinal Accepted Versio
Local molecular field theory for the treatment of electrostatics
We examine in detail the theoretical underpinnings of previous successful
applications of local molecular field (LMF) theory to charged systems. LMF
theory generally accounts for the averaged effects of long-ranged components of
the intermolecular interactions by using an effective or restructured external
field. The derivation starts from the exact Yvon-Born-Green hierarchy and shows
that the approximation can be very accurate when the interactions averaged over
are slowly varying at characteristic nearest-neighbor distances. Application of
LMF theory to Coulomb interactions alone allows for great simplifications of
the governing equations. LMF theory then reduces to a single equation for a
restructured electrostatic potential that satisfies Poisson's equation defined
with a smoothed charge density. Because of this charge smoothing by a Gaussian
of width sigma, this equation may be solved more simply than the detailed
simulation geometry might suggest. Proper choice of the smoothing length sigma
plays a major role in ensuring the accuracy of this approximation. We examine
the results of a basic confinement of water between corrugated wall and justify
the simple LMF equation used in a previous publication. We further generalize
these results to confinements that include fixed charges in order to
demonstrate the broader impact of charge smoothing by sigma. The slowly-varying
part of the restructured electrostatic potential will be more symmetric than
the local details of confinements.Comment: To be published in J Phys-Cond Matt; small misprint corrected in Eq.
(12) in V
Chemical chronology of the Southern Coalsack
We demonstrate how the observed H2O ice column densities toward three dense
globules in the Southern Coalsack could be used to constrain the ages of these
sources. We derive ages of ~10^5 yr, in agreement with dynamical studies of
these objects. We have modelled the chemical evolution of the globules, and
show how the molecular abundances are controlled by both the gas density and
the initial chemical conditions as the globules formed. Based on our derived
ages, we predict the column densities of several species of interest. These
predictions should be straightforward to test by performing molecular line
observationsComment: 10 pages, 4 figures, in press at MNRA
Attraction Between Like-Charged Walls: Short-Ranged Simulations Using Local Molecular Field Theory
Effective attraction between like-charged walls mediated by counterions is
studied using local molecular field (LMF) theory. Monte Carlo simulations of
the "mimic system'' given by LMF theory, with short-ranged "Coulomb core"
interactions in an effective single particle potential incorporating a
mean-field average of the long-ranged Coulomb interactions, provide a direct
test of the theory, and are in excellent agreement with more complex
simulations of the full Coulomb system by Moreira and Netz [Eur. Phys. J. E 8,
33 (2002)]. A simple, generally-applicable criterion to determine the
consistency parameter sigma_{min} needed for accurate use of the LMF theory is
presented
The resistance of randomly grown trees
Copyright @ 2011 IOP Publishing Ltd. This is a preprint version of the published article which can be accessed from the link below.An electrical network with the structure of a random tree is considered: starting from a root vertex, in one iteration each leaf (a vertex with zero or one adjacent edges) of the tree is extended by either a single edge with probability p or two edges with probability 1 − p. With each edge having a resistance equal to 1 omega, the total resistance Rn between the root vertex and a busbar connecting all the vertices at the nth level is considered. A dynamical system is presented which approximates Rn, it is shown that the mean value (Rn) for this system approaches (1 + p)/(1 − p) as n → ∞, the distribution of Rn at large n is also examined. Additionally, a random sequence construction akin to a random Fibonacci sequence is used to approximate Rn; this sequence is shown to be related to the Legendre polynomials and its mean is shown to converge with |(Rn) − (1 + p)/(1 − p)| ∼ n−1/2.Engineering and Physical Sciences Research Council (EPSRC
Spectral Density of Sparse Sample Covariance Matrices
Applying the replica method of statistical mechanics, we evaluate the
eigenvalue density of the large random matrix (sample covariance matrix) of the
form , where is an real sparse random matrix.
The difference from a dense random matrix is the most significant in the tail
region of the spectrum. We compare the results of several approximation
schemes, focusing on the behavior in the tail region.Comment: 22 pages, 4 figures, minor corrections mad
Exploring ecosystem markets for the delivery of public goods in the UK
Environmental restoration and conservation challenges go beyond what can be financed publicly. There are significant opportunities for private investment in the delivery of public goods, benefitting both commercial organisations whose business relies on ecosystem services, as well as landowners, land managers and the general public. Thus, public-private financing of natural capital improvement presents an opportunity to increase the availability of funding for payments for ecosystem services that provide environmental and societal benefits. Though public-private partnerships for the financing of ecosystem services is in its infancy in the UK.
This new report explores the voluntary ecosystem services market in the UK. This is achieved by developing an understanding of how key actors (schemes, stakeholder engagement initiatives, trading platforms and supporting modelling tools) operate, and by identifying possible synergies, examples of good practice and challenges to implementation. Topics covered include, understanding how the identified actors account for the social distribution of ecosystem services, how values are attributed to ecosystem services, and the legal obligations linked to ventures’ operation
Spin Glass Phase Transition on Scale-Free Networks
We study the Ising spin glass model on scale-free networks generated by the
static model using the replica method. Based on the replica-symmetric solution,
we derive the phase diagram consisting of the paramagnetic (P), ferromagnetic
(F), and spin glass (SG) phases as well as the Almeida-Thouless line as
functions of the degree exponent , the mean degree , and the
fraction of ferromagnetic interactions . To reflect the inhomogeneity of
vertices, we modify the magnetization and the spin glass order parameter
with vertex-weights. The transition temperature () between the
P-F (P-SG) phases and the critical behaviors of the order parameters are found
analytically. When , and are infinite, and the
system is in the F phase or the mixed phase for , while it is in the
SG phase at . and decay as power-laws with increasing
temperature with different -dependent exponents. When ,
the and are finite and related to the percolation threshold. The
critical exponents associated with and depend on for () at the P-F (P-SG) boundary.Comment: Phys. Rev. E in pres
- …