51 research outputs found
Considerations Concerning the Numerical Computation of Mixing Times in Steelmaking Ladles.
The thermophysical properties of metallic liquids
The main purpose of materials science and engineering is to make the best use of all the elements in the periodic table. This leads to the effective use and conservation of natural resources. For this purpose, in any liquid metallic processing operation, accurate data for the thermophysical properties of all metallic liquids (i.e. liquid metals, semimetals, and semiconductors) is needed. However, in addition, a clear understanding of the essence of their thermophysical properties, based on these data, is indispensable. The second volume continues from the first volume to provide explanations for the thermophysical properties of metallic liquids. The two volumes identify new dimensionless parameters, extracted from the velocity of sound. In spite of being simple parameters, they provide useful information on the nature and behaviour of metallic liquids. This volume covers several basic concepts needed to understand the thermophysical properties of metallic liquids and for developing reliable models to accurately predict the thermophysical properties of almost all metallic elements in the liquid state, together with methods for quantitative assessment of models/equations. The volume reviews the structure of metallic liquids, which is based on the theory of liquids, density, volume expansivity, thermodynamic properties (evaporation enthalpy, vapour pressure, heat capacity), sound velocity, surface tension, viscosity, diffusion, and electrical and thermal conductivities. The essential points of methods used for measuring these experimental data are also presented. This book also provides predictions of thermophysical properties for elemental metallic liquids. A large number of physical quantities and experimentally derived data for the thermophysical properties of liquid metallic elements are compiled
Computational Fluid Dynamics and Experimental Results for the Horizontal Single Belt Casting (HSBC) of Aluminum Alloy Strips
Continuous Casting Practices for Steel: Past, Present and Future
This historical review of casting methods used to produce sheets of steel for automobiles, household products, rocket bodies, etc., all point toward the development of one-step commercial processes, which are capable of casting liquid steel directly into a final sheet product. Progress towards this goal is confirmed by successful advances being made, but there remain major difficulties in reaching it. We concur that the conventional continuous casting method remains the current process of choice for highest-quality steel sheet products, but the ESP TSC (Endless Strip Production—Thin Slab Caster) approach is now highly competitive. Similarly, the original goal of Sir Henry Bessemer to produce a direct strip-making twin-drum caster, in 1856, finally came to lasting commercial fruition at CASTRIP/NUCOR. Nonetheless, a newer approach, promoted by Salzgitter, termed DSP (Direct Strip Production), or promoted by MMPC/MetSim as HSBC (Horizontal Single Belt Casting), has several advantages over CASTRIP in terms of microstructures and productivity. As such, the pros and cons of current methods are reviewed within this brief history of casting
Continuous Casting Practices for Steel: Past, Present and Future
This historical review of casting methods used to produce sheets of steel for automobiles, household products, rocket bodies, etc., all point toward the development of one-step commercial processes, which are capable of casting liquid steel directly into a final sheet product. Progress towards this goal is confirmed by successful advances being made, but there remain major difficulties in reaching it. We concur that the conventional continuous casting method remains the current process of choice for highest-quality steel sheet products, but the ESP TSC (Endless Strip Production—Thin Slab Caster) approach is now highly competitive. Similarly, the original goal of Sir Henry Bessemer to produce a direct strip-making twin-drum caster, in 1856, finally came to lasting commercial fruition at CASTRIP/NUCOR. Nonetheless, a newer approach, promoted by Salzgitter, termed DSP (Direct Strip Production), or promoted by MMPC/MetSim as HSBC (Horizontal Single Belt Casting), has several advantages over CASTRIP in terms of microstructures and productivity. As such, the pros and cons of current methods are reviewed within this brief history of casting.</jats:p
- …
