80 research outputs found

    Matrix metalloproteinase-19 inhibits growth of endothelial cells by generating angiostatin-like fragments from plasminogen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis is the process of forming new blood vessels from existing ones and requires degradation of the vascular basement membrane and remodeling of extracellular matrix (ECM) in order to allow endothelial cells to migrate and invade into the surrounding tissue. Matrix metalloproteinases (MMPs) are considered to play a central role in the remodeling of basement membranes and ECM. However, MMPs contribute to vascular remodeling not only by degrading ECM components. Specific MMPs enhance angiogenesis via several ways; they help pericytes to detach from vessels undergoing angiogenesis, release ECM-bound angiogenic growth factors, expose cryptic pro-angiogenic integrin binding sites in the ECM, generate promigratory ECM component fragments, and cleave endothelial cell-cell adhesions. MMPs can also negatively influence the angiogenic process through generating endogenous angiogenesis inhibitors by proteolytic cleavage. Angiostatin, a proteolytic fragment of plasminogen, is one of the most potent antagonists of angiogenesis that inhibits migration and proliferation of endothelial cells. Reports have shown that metalloelastase, pancreas elastase, plasmin reductase, and plasmin convert plasminogen to angiostatin.</p> <p>Results</p> <p>We report here that MMP-19 processes human plasminogen in a characteristic cleavage pattern to generate three angiostatin-like fragments with a molecular weight of 35, 38, and 42 kDa. These fragments released by MMP-19 significantly inhibited the proliferation of HMEC cells by 27% (p = 0.01) and reduced formation of capillary-like structures by 45% (p = 0.05) compared with control cells. As it is known that angiostatin blocks hepatocyte growth factor (HGF)-induced pro-angiogenic signaling in endothelial cells due to structural similarities to HGF, we have analyzed if the plasminogen fragments generated by MMP-19 interfere with this pathway. As it involves the activation of c-met, the receptor of HGF, we could show that MMP-19-dependent processing of plasminogen decreases the phosphorylation of c-met.</p> <p>Conclusion</p> <p>Altogether, MMP-19 exhibits an anti-angiogenic effect on endothelial cells via generation of angiostatin-like fragments.</p

    Transplanted Human Amniotic Membrane-Derived Mesenchymal Stem Cells Ameliorate Carbon Tetrachloride-Induced Liver Cirrhosis in Mouse

    Get PDF
    BACKGROUND: Human amniotic membrane-derived mesenchymal stem cells (hAMCs) have the potential to reduce heart and lung fibrosis, but whether could reduce liver fibrosis remains largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Hepatic cirrhosis model was established by infusion of CCl₄ (1 ml/kg body weight twice a week for 8 weeks) in immunocompetent C57Bl/6J mice. hAMCs, isolated from term delivered placenta, were infused into the spleen at 4 weeks after mice were challenged with CCl₄. Control mice received only saline infusion. Animals were sacrificed at 4 weeks post-transplantation. Blood analysis was performed to evaluate alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Histological analysis of the livers for fibrosis, hepatic stellate cells activation, hepatocyte apoptosis, proliferation and senescence were performed. The donor cell engraftment was assessed using immunofluorescence and polymerase chain reaction. The areas of hepatic fibrosis were reduced (6.2%±2.1 vs. control 9.6%±1.7, p<0.05) and liver function parameters (ALT 539.6±545.1 U/dl, AST 589.7±342.8 U/dl,vs. control ALT 139.1±138.3 U/dl, p<0.05 and AST 212.3±110.7 U/dl, p<0.01) were markedly ameliorated in the hAMCs group compared to control group. The transplantation of hAMCs into liver-fibrotic mice suppressed activation of hepatic stellate cells, decreased hepatocyte apoptosis and promoted liver regeneration. More interesting, hepatocyte senescence was depressed significantly in hAMCs group compared to control group. Immunofluorescence and polymerase chain reaction revealed that hAMCs engraftment into host livers and expressed the hepatocyte-specific markers, human albumin and α-fetoproteinran. CONCLUSIONS/SIGNIFICANCE: The transplantation of hAMCs significantly decreased the fibrosis formation and progression of CCl₄-induced cirrhosis, providing a new approach for the treatment of fibrotic liver disease

    Functional Contribution of Elevated Circulating and Hepatic Non-Classical CD14+CD16+ Monocytes to Inflammation and Human Liver Fibrosis

    Get PDF
    BACKGROUND: Monocyte-derived macrophages critically perpetuate inflammatory responses after liver injury as a prerequisite for organ fibrosis. Experimental murine models identified an essential role for the CCR2-dependent infiltration of classical Gr1/Ly6C(+) monocytes in hepatic fibrosis. Moreover, the monocyte-related chemokine receptors CCR1 and CCR5 were recently recognized as important fibrosis modulators in mice. In humans, monocytes consist of classical CD14(+)CD16(-) and non-classical CD14(+)CD16(+) cells. We aimed at investigating the relevance of monocyte subpopulations for human liver fibrosis, and hypothesized that 'non-classical' monocytes critically exert inflammatory as well as profibrogenic functions in patients during liver disease progression. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed circulating monocyte subsets from freshly drawn blood samples of 226 patients with chronic liver disease (CLD) and 184 healthy controls by FACS analysis. Circulating monocytes were significantly expanded in CLD-patients compared to controls with a marked increase of the non-classical CD14(+)CD16(+) subset that showed an activated phenotype in patients and correlated with proinflammatory cytokines and clinical progression. Correspondingly, CD14(+)CD16(+) macrophages massively accumulated in fibrotic/cirrhotic livers, as evidenced by immunofluorescence and FACS. Ligands of monocyte-related chemokine receptors CCR2, CCR1 and CCR5 were expressed at higher levels in fibrotic and cirrhotic livers, while CCL3 and CCL4 were also systemically elevated in CLD-patients. Isolated monocyte/macrophage subpopulations were functionally characterized regarding cytokine/chemokine expression and interactions with primary human hepatic stellate cells (HSC) in vitro. CD14(+)CD16(+) monocytes released abundant proinflammatory cytokines. Furthermore, CD14(+)CD16(+), but not CD14(+)CD16(-) monocytes could directly activate collagen-producing HSC. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate the expansion of CD14(+)CD16(+) monocytes in the circulation and liver of CLD-patients upon disease progression and suggest their functional contribution to the perpetuation of intrahepatic inflammation and profibrogenic HSC activation in liver cirrhosis. The modulation of monocyte-subset recruitment into the liver via chemokines/chemokine receptors and their subsequent differentiation may represent promising approaches for therapeutic interventions in human liver fibrosis

    Presence of intestinal Mycobacterium avium subspecies paratuberculosis (MAP) DNA is not associated with altered MMP expression in ulcerative colitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mycobacterium avium </it>subspecies <it>paratuberculosis </it>(MAP) is suspected to be a causative agent in human Crohn's disease (CD). Recent evidence suggests that pathogenic mycobacteria and MAP can induce the expression of Matrix Metalloproteinases (MMP), which are the main proteases in the pathogenesis of mucosal ulcerations in inflammatory bowel disease (IBD). Within this study we assessed the prevalence of intestinal MAP specific DNA in patients with Crohn's disease, ulcerative colitis (UC), and healthy controls. We further analysed regulation patterns of MMPs in mucosal tissues of UC patients with and without intestinal MAP DNA detection.</p> <p>Methods</p> <p>Colonic biopsy samples were obtained from 63 Norwegian and German IBD patients and 21 healthy controls. RNA was quantified by quantitative real-time polymerase chain reaction (PCR) to study MMP gene expression in both pathological and healthy mucosal specimens. The presence of MAP DNA in colonic mucosa was examined using MAP specific PCR.</p> <p>Results</p> <p>MAP DNA was detected in 20% of UC patients and 33% of healthy controls but only in 7% of patients with CD. UC patients treated with corticosteroids exhibited a significantly increased frequency of intestinal MAP DNA compared to those not receiving corticosteroids. Expression of MMP-1, -2, -7, -9, -13, -19, -28 and TNF-α did not differ between UC patients with presence of intestinal MAP DNA compared to those without. MMP-2, MMP-9 and MMP-13 were significantly decreased in UC patients receiving corticosteroids.</p> <p>Conclusions</p> <p>The presence of intestinal MAP specific DNA is not associated with altered MMP expression in UC <it>in vivo</it>. Corticosteroids are associated with increased detection of intestinal MAP DNA and decreased expression of certain MMPs. Frequent detection of MAP DNA in healthy controls might be attributable to the wide environmental distribution of MAP and its presence in the food-chain.</p

    Matrix Metalloproteinase Gene Delivery for Liver Fibrosis

    Get PDF
    The resolution of advanced liver fibrosis has been recently recognized to be possible, if the causative stimuli are successfully removed. However, whether complete resolution from cirrhosis, the end stage of liver fibrosis, can be achieved is still questionable. Delivery of interstitial collagenases, such as matrix metalloproteinase (MMP)-1, in the liver could be an attractive strategy to treat advanced hepatic fibrosis from the view point that the imbalance between too few interstitial collagenases and too many of their inhibitors is the main obstacle to the resolution from fibrosis. Remodeling of hepatic extracellular matrix by delivered interstitial collagenases also facilitates the disappearance of activated hepatic stellate cells, the main matrix-producing cells in the liver, and promotes the proliferation of hepatocytes. This review will focus on the impact of the gene delivery of MMPs for the treatment of advanced liver fibrosis while discussing other current therapeutic strategies for liver fibrosis, and on the need for the development of a safe and effective delivery system of MMPs

    Role of host genetics in fibrosis

    Get PDF
    Fibrosis can occur in tissues in response to a variety of stimuli. Following tissue injury, cells undergo transformation or activation from a quiescent to an activated state resulting in tissue remodelling. The fibrogenic process creates a tissue environment that allows inflammatory and matrix-producing cells to invade and proliferate. While this process is important for normal wound healing, chronicity can lead to impaired tissue structure and function

    Mesenchymal stem cells: from experiment to clinic

    Get PDF
    There is currently much interest in adult mesenchymal stem cells (MSCs) and their ability to differentiate into other cell types, and to partake in the anatomy and physiology of remote organs. It is now clear these cells may be purified from several organs in the body besides bone marrow. MSCs take part in wound healing by contributing to myofibroblast and possibly fibroblast populations, and may be involved in epithelial tissue regeneration in certain organs, although this remains more controversial. In this review, we examine the ability of MSCs to modulate liver, kidney, heart and intestinal repair, and we update their opposing qualities of being less immunogenic and therefore tolerated in a transplant situation, yet being able to contribute to xenograft models of human tumour formation in other contexts. However, such observations have not been replicated in the clinic. Recent studies showing the clinical safety of MSC in several pathologies are discussed. The possible opposing powers of MSC need careful understanding and control if their clinical potential is to be realised with long-term safety for patients

    New Insight into the Antifibrotic Effects of Praziquantel on Mice in Infection with Schistosoma japonicum

    Get PDF
    Schistosomiasis is a parasitic disease infecting more than 200 million people in the world. Although chemotherapy targeting on killing schistosomes is one of the main strategies in the disease control, there are few effective ways of dealing with liver fibrosis caused by the parasite infection in the chronic and advanced stages of schistosomiasis. For this reason, new strategies and prospective drugs, which exert antifibrotic effects, are urgently required.-induced liver fibrosis was inhibited by PZQ treatment for 30 days. Furthermore, we analyzed the effects of praziquantel on mouse primary hepatic stellate cells (HSCs). It is indicated that mRNA expressions of Col1α1, Col3α1, α-SMA, TGF-β, MMP9 and TIMP1 of HSCs were all inhibited after praziquantel anti-parasite treatments.The significant amelioration of hepatic fibrosis by praziquantel treatment validates it as a promising drug of anti-fibrosis and offers potential of a new chemotherapy for hepatic fibrosis resulting from schistosomiasis
    corecore