104 research outputs found
Identification of Epigenetic Signature Associated With Alpha Thalassemia/Mental Retardation X-linked Syndrome
BACKGROUND: Alpha thalassemia/mental retardation X-linked syndrome (ATR-X) is caused by a mutation at the chromatin regulator gene
RESULTS: We performed genome-wide DNA methylation assessment of the peripheral blood samples from 18 patients with ATR-X and compared it to 210 controls. We demonstrated the evidence of a unique and highly specific DNA methylation epi-signature in the peripheral blood of ATRX patients, which was corroborated by targeted bisulfite sequencing experiments. Although genomically represented, differentially methylated regions showed evidence of preferential clustering in pericentromeric and telometric chromosomal regions, areas where ATRX has multiple functions related to maintenance of heterochromatin and genomic integrity.
CONCLUSION: Most significant methylation changes in the 14 genomic loci provide a unique epigenetic signature for this syndrome that may be used as a highly sensitive and specific diagnostic biomarker to support the diagnosis of ATR-X, particularly in patients with phenotypic complexity and in patients wit
Gene signatures of breast cancer progression and metastasis
Breast cancer is a heterogeneous disease. Patient outcome varies significantly, depending on prognostic features of patients and their tumors, including patient age, menopausal status, tumor size and histology, nodal status, and so on. Response to treatment also depends on a series of predictive factors, such as hormone receptor and HER2 status. Current treatment guidelines use these features to determine treatment. However, these guidelines are imperfect, and do not always predict response to treatment or survival. Evolving technologies are permitting increasingly large amounts of molecular data to be obtained from tumors, which may enable more personalized treatment decisions to be made. The challenge is to learn what information leads to improved prognostic accuracy and treatment outcome for individual patients
In Vitro Analysis of Integrated Global High-Resolution DNA Methylation Profiling with Genomic Imbalance and Gene Expression in Osteosarcoma
Genetic and epigenetic changes contribute to deregulation of gene expression and development of human cancer. Changes in DNA methylation are key epigenetic factors regulating gene expression and genomic stability. Recent progress in microarray technologies resulted in developments of high resolution platforms for profiling of genetic, epigenetic and gene expression changes. OS is a pediatric bone tumor with characteristically high level of numerical and structural chromosomal changes. Furthermore, little is known about DNA methylation changes in OS. Our objective was to develop an integrative approach for analysis of high-resolution epigenomic, genomic, and gene expression profiles in order to identify functional epi/genomic differences between OS cell lines and normal human osteoblasts. A combination of Affymetrix Promoter Tilling Arrays for DNA methylation, Agilent array-CGH platform for genomic imbalance and Affymetrix Gene 1.0 platform for gene expression analysis was used. As a result, an integrative high-resolution approach for interrogation of genome-wide tumour-specific changes in DNA methylation was developed. This approach was used to provide the first genomic DNA methylation maps, and to identify and validate genes with aberrant DNA methylation in OS cell lines. This first integrative analysis of global cancer-related changes in DNA methylation, genomic imbalance, and gene expression has provided comprehensive evidence of the cumulative roles of epigenetic and genetic mechanisms in deregulation of gene expression networks
Identification of epigenetic signature associated with alpha thalassemia/mental retardation X-linked syndrome
- …
