10 research outputs found

    Long-Term Outcomes and Practical Considerations in the Pharmacological Management of Tyrosinemia Type 1

    Get PDF
    Tyrosinemia type 1 (TT1) is a rare metabolic disease caused by a defect in tyrosine catabolism. TT1 is clinically characterized by acute liver failure, development of hepatocellular carcinoma, renal and neurological problems, and consequently an extremely poor outcome. This review showed that the introduction of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) in 1992 has revolutionized the outcome of TT1 patients, especially when started pre-clinically. If started early, NTBC can prevent liver failure, renal problems, and neurological attacks and decrease the risk for hepatocellular carcinoma. NTBC has been shown to be safe and well tolerated, although the long-term effectiveness of treatment with NTBC needs to be awaited. The high tyrosine concentrations caused by treatment with NTBC could result in ophthalmological and skin problems and requires life-long dietary restriction of tyrosine and its precursor phenylalanine, which could be strenuous to adhere to. In addition, neurocognitive problems have been reported since the introduction of NTBC, with hypothesized but as yet unproven pathophysiological mechanisms. Further research should be done to investigate the possible relationship between important clinical outcomes and blood concentrations of biochemical parameters such as phenylalanine, tyrosine, succinylacetone, and NTBC, and to develop clear guidelines for treatment and follow-up with reliable measurements. This all in order to ultimately improve the combined NTBC and dietary treatment and limit possible complications such as hepatocellular carcinoma development, neurocognitive problems, and impaired quality of life

    The Effect of Various Doses of Phenylalanine Supplementation on Blood Phenylalanine and Tyrosine Concentrations in Tyrosinemia Type 1 Patients

    Get PDF
    Tyrosinemia type 1 (TT1) treatment with 2-(2-nitro-4-trifluormethyl-benzyl)-1,3-cyclohexanedione (NTBC) and a phenylalanine-tyrosine restricted diet is associated with low phenylalanine concentrations. Phenylalanine supplementation is prescribed without comprehensive consideration about its effect on metabolic control. We investigated the effect of phenylalanine supplementation on bloodspot phenylalanine, tyrosine, NTBC and succinylacetone. Eleven TT1 patients received 0, 20 and 40 mg/kg/day phenylalanine supplementation with the phenylalanine-tyrosine free L-amino acid supplements. Bloodspots were collected before breakfast, midday and evening meal. Differences between study periods, sample times and days within a study period were studied using (generalized) linear mixed model analyses. Twenty and 40 mg/kg/day phenylalanine supplementation prevented daytime phenylalanine decreases (p = 0.05) and most low phenylalanine concentrations, while tyrosine concentrations increased (p <0.001). Furthermore, NTBC and succinylacetone concentrations did not differ between study periods. To conclude, 20 mg/kg/day phenylalanine supplementation can prevent most low phenylalanine concentrations without increasing tyrosine to concentrations above the target range or influencing NTBC and succinylacetone concentrations, while 40 mg/kg/day increased tyrosine concentrations to values above the targeted range. Additionally, this study showed that the effect of phenylalanine supplementation, and a possible phenylalanine deficiency, should be assessed using pre-midday meal blood samples that could be combined with an overnight fasted sample when in doubt

    A generic emergency protocol for patients with inborn errors of metabolism causing fasting intolerance:A retrospective, single-center study and the generation of www.emergencyprotocol.net

    Get PDF
    Patients with inborn errors of metabolism causing fasting intolerance can experience acute metabolic decompensations. Long‐term data on outcomes using emergency letters are lacking. This is a retrospective, observational, single‐center study of the use of emergency letters based on a generic emergency protocol in patients with hepatic glycogen storage diseases (GSD) or fatty acid oxidation disorders (FAOD). Data on hospital admissions, initial laboratory results, and serious adverse events were collected. Subsequently, the website www.emergencyprotocol.net was generated in the context of the CONNECT MetabERN eHealth project following multiple meetings, protocol revisions, and translations. Representing 470 emergency protocol years, 127 hospital admissions were documented in 54/128 (42%) patients who made use of emergency letters generated based on the generic emergency protocol. Hypoglycemia (here defined as glucose concentration 5 years. Convulsions, coma, or death was not documented. By providing basic information, emergency letters for individual patients with hepatic GSD or the main FAOD can be generated at www.emergencyprotocol.net, in nine different languages. Generic emergency protocols are safe and easy for home management by the caregivers and the first hour in‐hospital management to prevent metabolic emergencies in patients with hepatic GSD and medium‐chain Acyl CoA dehydrogenase deficiency. The website www.emergencyprotocol.net is designed to support families and healthcare providers to generate personalized emergency letters for patients with hepatic GSD and the main FAOD

    Biomarkers of Micronutrients in Regular Follow-Up for Tyrosinemia Type 1 and Phenylketonuria Patients

    Get PDF
    Phenylketonuria (PKU) is treated with dietary restrictions and sometimes tetrahydrobiopterin (BH4). PKU patients are at risk for developing micronutrient deficiencies, such as vitamin B12 and folic acid, likely due to their diet. Tyrosinemia type 1 (TT1) is similar to PKU in both pathogenesis and treatment. TT1 patients follow a similar diet, but nutritional deficiencies have not been investigated yet. In this retrospective study, biomarkers of micronutrients in TT1 and PKU patients were investigated and outcomes were correlated to dietary intake and anthropometric measurements from regular follow-up measurements from patients attending the outpatient clinic. Data was analyzed using Kruskal-Wallis, Fisher's exact and Spearman correlation tests. Furthermore, descriptive data were used. Overall, similar results for TT1 and PKU patients (with and without BH4) were observed. In all groups high vitamin B12 concentrations were seen rather than B12 deficiencies. Furthermore, all groups showed biochemical evidence of vitamin D deficiency. This study shows that micronutrients in TT1 and PKU patients are similar and often within the normal ranges and that vitamin D concentrations could be optimized

    Measuring cystic fibrosis drug responses in organoids derived from 2D differentiated nasal epithelia

    Get PDF
    Cystic fibrosis is caused by genetic defects that impair the CFTR channel in airway epithelial cells. These defects may be overcome by specific CFTR modulating drugs, for which the efficacy can be predicted in a personalized manner using 3D nasal-brushing-derived airway organoids in a forskolin-induced swelling assay. Despite of this, previously described CFTR function assays in 3D airway organoids were not fully optimal, because of inefficient organoid differentiation and limited scalability. In this report, we therefore describe an alternative method of culturing nasal-brushing-derived airway organoids, which are created from an equally differentiated airway epithelial monolayer of a 2D air-liquid interface culture. In addition, we have defined organoid culture conditions, with the growth factor/cytokine combination neuregulin-1&lt;i&gt;β&lt;/i&gt; and interleukin-1&lt;i&gt;β&lt;/i&gt;, which enabled consistent detection of CFTR modulator responses in nasal-airway organoid cultures from subjects with cystic fibrosis

    A randomized controlled trial to pilot the efficacy of a computer-based intervention with elements of virtual reality and limited therapist assistance for the treatment of post-traumatic stress disorder.

    No full text
    Although well-established therapies exist for post-traumatic stress disorder (PTSD), barriers to seek mental health care are high. Technology-based interventions may play a role in improving the reach of efforts to treat, especially when therapist availability is low. The goal of the current randomized controlled trial was to pilot the efficacy of a computer-based trauma intervention with elements of virtual reality (VR; 3MR system) and limited therapist involvement for the treatment of PTSD in a childhood sexual abuse (CSA) and war veteran sample and to compare this to "treatment as usual" (TAU). TAU consisted of evidence-based approaches such as imaginal exposure, EMDR, or narrative exposure therapy. A total of 44 patients with PTSD were included and randomly assigned to 12 sessions of 3MR intervention or TAU (completer n 3MR = 12, TAU = 18). Several measures (PCL-5, BDI-II, OQ-45-2, and the M.I.N.I. 5.0.0.) were administered to measure symptoms of PTSD and depression and scores of overall well-being at pre, post, and a three-month follow-up measurement. Analyses suggest that symptoms of PTSD and depression in the 3MR condition decreased, and overall well-being increased between pre and post measurements. Results did not indicate any clear differences between the treatment conditions over time which suggests that treatment gains of the 3MR intervention seem no less than those of TAU. Finally, both treatment conditions produced similar remission rates of PTSD and depression. Therefore, the 3MR intervention could possibly constitute an appropriate treatment alternative. The small sample size as well as evident drop-out rates in the 3MR condition (45%) do warrant further research. The procedures of this study were approved by the Medical Ethical Research Committee (MERC) of the Erasmus Medical Center in Rotterdam (MEC-NL46279.078.13) and pre-registered via ClinicalTrials.gov (Protocol Record CI1-12-S028-1)

    Measuring cystic fibrosis drug responses in organoids derived from 2D differentiated nasal epithelia

    Get PDF
    Cystic fibrosis is caused by genetic defects that impair the CFTR channel in airway epithelial cells. These defects may be overcome by specific CFTR modulating drugs, for which the efficacy can be predicted in a personalized manner using 3D nasal-brushing-derived airway organoids in a forskolin-induced swelling assay. Despite of this, previously described CFTR function assays in 3D airway organoids were not fully optimal, because of inefficient organoid differentiation and limited scalability. In this report, we therefore describe an alternative method of culturing nasal-brushing-derived airway organoids, which are created from an equally differentiated airway epithelial monolayer of a 2D air-liquid interface culture. In addition, we have defined organoid culture conditions, with the growth factor/cytokine combination neuregulin-1β and interleukin-1β, which enabled consistent detection of CFTR modulator responses in nasal-airway organoid cultures from subjects with cystic fibrosis

    Prevention of pneumococcal diseases in the post-seven valent vaccine era: A European perspective

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The burden of invasive pneumococcal disease in young children decreased dramatically following introduction of the 7-valent pneumococcal conjugate vaccine (PCV7). The epidemiology of <it>S. pneumoniae</it> now reflects infections caused by serotypes not included in PCV7. Recently introduced higher valency pneumococcal vaccines target the residual burden of invasive and non-invasive infections, including those caused by serotypes not included in PCV7. This review is based on presentations made at the European Society of Pediatric Infectious Diseases in June 2011.</p> <p>Discussion</p> <p>Surveillance data show increased circulation of the non-PCV7 vaccine serotypes 1, 3, 6A, 6C, 7 F and 19A in countries with routine vaccination. Preliminary evidence suggests that broadened serotype coverage offered by higher valency vaccines may be having an effect on invasive disease caused by some of those serotypes, including 19A, 7 F and 6C. Aetiology of community acquired pneumonia remains a difficult clinical diagnosis. However, recent reports indicate that pneumococcal vaccination has reduced hospitalisations of children for vaccine serotype pneumonia. Variations in serotype circulation and occurrence of complicated and non-complicated pneumonia caused by non-PCV7 serotypes highlight the potential of higher valency vaccines to decrease the remaining burden. PCVs reduce nasopharyngeal carriage and acute otitis media (AOM) caused by vaccine serotypes. Recent investigations of the interaction between <it>S. pneumoniae</it> and non-typeable <it>H. influenzae</it> suggest that considerable reduction in severe, complicated AOM infections may be achieved by prevention of early pneumococcal carriage and AOM infections. Extension of the vaccine serotype spectrum beyond PCV7 may provide additional benefit in preventing the evolution of AOM. The direct and indirect costs associated with pneumococcal disease are high, thus herd protection and infections caused by non-vaccine serotypes both have strong effects on the cost effectiveness of pneumococcal vaccination. Recent evaluations highlight the public health significance of indirect benefits, prevention of pneumonia and AOM and coverage of non-PCV7 serotypes by higher valency vaccines.</p> <p>Summary</p> <p>Routine vaccination has greatly reduced the burden of pneumococcal diseases in children. The pneumococcal serotypes present in the 7-valent vaccine have greatly diminished among disease isolates. The prevalence of some non-vaccine serotypes (e.g. 1, 7 F and 19A) has increased. Pneumococcal vaccines with broadened serotype coverage are likely to continue decreasing the burden of invasive disease, and community acquired pneumonia in children. Further reductions in pneumococcal carriage and increased prevention of early AOM infections may prevent the evolution of severe, complicated AOM. Evaluation of the public health benefits of pneumococcal conjugate vaccines should include consideration of non-invasive pneumococcal infections, indirect effects of vaccination and broadened serotype coverage.</p

    Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities

    No full text
    Success rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires the establishment of robust data resources to enable data sharing that informs accurate understanding of genes, variants, and phenotypes. The "Mitochondrial Disease Sequence Data Resource (MSeqDR) Consortium" is a grass-roots effort facilitated by the United Mitochondrial Disease Foundation to identify and prioritize specific genomic data analysis needs of the global mitochondrial disease clinical and research community. A central Web portal (. https://mseqdr.org) facilitates the coherent compilation, organization, annotation, and analysis of sequence data from both nuclear and mitochondrial genomes of individuals and families with suspected mitochondrial disease. This Web portal provides users with a flexible and expandable suite of resources to enable variant-, gene-, and exome-level sequence analysis in a secure, Web-based, and user-friendly fashion. Users can also elect to share data with other MSeqDR Consortium members, or even the general public, either by custom annotation tracks or through the use of a convenient distributed annotation system (DAS) mechanism. A range of data visualization and analysis tools are provided to facilitate user interrogation and understanding of genomic, and ultimately phenotypic, data of relevance to mitochondrial biology and disease. Currently available tools for nuclear and mitochondrial gene analyses include an MSeqDR GBrowse instance that hosts optimized mitochondrial disease and mitochondrial DNA (mtDNA) specific annotation tracks, as well as an MSeqDR locus-specific database (LSDB) that curates variant data on more than 1300 genes that have been implicated in mitochondrial disease and/or encode mitochondria-localized proteins. MSeqDR is integrated with a diverse array of mtDNA data analysis tools that are both freestanding and incorporated into an online exome-level dataset curation and analysis resource (GEM.app) that is being optimized to support needs of the MSeqDR community. In addition, MSeqDR supports mitochondrial disease phenotyping and ontology tools, and provides variant pathogenicity assessment features that enable community review, feedback, and integration with the public ClinVar variant annotation resource. A centralized Web-based informed consent process is being developed, with implementation of a Global Unique Identifier (GUID) system to integrate data deposited on a given individual from different sources. Community-based data deposition into MSeqDR has already begun. Future efforts will enhance capabilities to incorporate phenotypic data that enhance genomic data analyses. MSeqDR will fill the existing void in bioinformatics tools and centralized knowledge that are necessary to enable efficient nuclear and mtDNA genomic data interpretation by a range of shareholders across both clinical diagnostic and research settings. Ultimately, MSeqDR is focused on empowering the global mitochondrial disease community to better define and explore mitochondrial diseases
    corecore