3 research outputs found
Markovian Gaussian Process Variational Autoencoders
Deep generative models are widely used for modelling high-dimensional time
series, such as video animations, audio and climate data. Sequential
variational autoencoders have been successfully considered for many
applications, with many variant models relying on discrete-time methods and
recurrent neural networks (RNNs). On the other hand, continuous-time methods
have recently gained attraction, especially in the context of
irregularly-sampled time series, where they can better handle the data than
discrete-time methods. One such class are Gaussian process variational
autoencoders (GPVAEs), where the VAE prior is set as a Gaussian process (GPs),
allowing inductive biases to be explicitly encoded via the kernel function and
interpretability of the latent space. However, a major limitation of GPVAEs is
that it inherits the same cubic computational cost as GPs. In this work, we
leverage the equivalent discrete state space representation of Markovian GPs to
enable a linear-time GP solver via Kalman filtering and smoothing. We show via
corrupt and missing frames tasks that our method performs favourably,
especially on the latter where it outperforms RNN-based models.Comment: Non-archival paper presented at Workshop on Continuous Time Methods
for Machine Learning. The 39th International Conference on Machine Learning,
Baltimor
Joint object boundary and skeleton detection using convolutional neural networks
While the duality between boundary and medial representations has been exploited in the context of pre-segmented shapes, it has not been studied in the context of natural scenes.
The goal of this project is to use a shared feature representation to address edge and skeleton detection simultaneously, improving performance for both tasks.
To compare the relative benefits of a joint approach, we plan to use a single convolutional neural network (CNN) for both tasks, combined with a novel loss function that enforces consistency between detected boundary and medial points.Outgoin
Kausal upptÀckt för villkorad stationÀr tidsseriedata : Mot kausal upptÀckt i videor
Performing causal reasoning in a scene is an inherent mechanism in human cognition; however, the majority of approaches in the causality literature aiming for this task still consider constrained scenarios, such as simple physical systems or stationary time-series data. In this work we aim for causal discovery in videos concerning realistic scenarios. We gather motivation for causal discovery by acknowledging this task to be core at human cognition. Moreover, we interpret the scene as a composition of time-series that interact along the sequence and aim for modeling the non-stationary behaviors in a scene. We propose State-dependent Causal Inference (SDCI) for causal discovery in conditional stationary time-series data. We formulate our problem of causal analysis by considering that the stationarity of the time-series is conditioned on a categorical variable, which we call state. Results show that the probabilistic implementation proposed achieves outstanding results in identifying causal relations on simulated data. When considering the state being independent from the dynamics, our method maintains decent accuracy levels of edge-type identification achieving 74.87% test accuracy when considering a total of 8 states. Furthermore, our method correctly handles regimes where the state variable undergoes complex transitions and is dependent on the dynamics of the scene, achieving 79.21% accuracy in identifying the causal interactions. We consider this work to be an important contribution towards causal discovery in videos. Att utföra kausala resonemang i en scen Àr en medfödd mekanism i mÀnsklig kognition; dock betraktar fortfarande majoriteten av tillvÀgagÄngssÀtt i kausalitetslitteraturen, som syftar till denna uppgift, begrÀnsade scenarier sÄsom enkla fysiska system eller stationÀra tidsseriedata. I detta arbete strÀvar vi efter kausal upptÀckt i videor om realistiska scenarier. Vi samlar motivation för kausal upptÀckt genom att erkÀnna att denna uppgift Àr kÀrnan i mÀnsklig kognition. Dessutom tolkar vi scenen som en komposition av tidsserier som interagerar lÀngs sekvensen och syftar till att modellera det icke-stationÀra beteendet i en scen. Vi föreslÄr TillstÄndsberoende kausal inferens (SDCI) för kausal upptÀckt i villkorlig stationÀr tidsseriedata. Vi formulerar vÄrt problem med kausalanalys genom att anse att tidsseriens stationÀritet Àr villkorad av en kategorisk variabel, som vi kallar tillstÄnd. Resultaten visar att det föreslagna probabilistiska genomförandet uppnÄr enastÄende resultat vid identifiering av orsakssambandet pÄ simulerade data. NÀr man övervÀger att tillstÄndet Àr oberoende av dynamiken, upprÀtthÄller vÄr metod anstÀndiga noggrannhetsnivÄer av kanttypsidentifiering som uppnÄr 74, 87% testnoggrannhet nÀr man övervÀger totalt 8 tillstÄnd. Dessutom hanterar vÄr metod korrekt regimer dÀr tillstÄndsvariabeln genomgÄr komplexa övergÄngar och Àr beroende av dynamiken pÄ scenen och uppnÄr 79, 21% noggrannhet för att identifiera kausala interaktioner. Vi anser att detta arbete Àr ett viktigt bidrag till kausal upptÀckt i videor